廣義相對論和狹義相對論
(2006-12-15 12:55:14)
下一個
廣義相對論的基本概念解釋:
廣義相對論是愛因斯坦繼狹義相對論之後,深入研究引力理論,於1913年提出的引力場的相對論理論。這一理論完全不同於牛頓的引力論,它把引力場歸結為物體周圍的時空彎曲,把物體受引力作用而運動,歸結為物體在彎曲時空中沿短程線的自由運動。因此,廣義相對論亦稱時空幾何動力學,即把引力歸結為時空的幾何特性。
如何理解廣義相對論的時空彎曲呢?這裏我們借用一個模型式的比擬來加以說明。假如有兩個質量很大的鋼球,按牛頓的看法,它們因萬有引力相互吸引,將彼此接近。而愛因斯坦的廣義相對論則並不認為這兩個鋼球間存在吸引力。它們之所以相互靠近,是由於沒有鋼球出現時,周圍的時空猶如一張拉平的網,現在兩個鋼球把這張時空網壓彎了,於是兩個鋼球就沿著彎曲的網滾到一起來了。這就相當於因時空彎曲物體沿短程線的運動。所以,愛因斯坦的廣義相對論是不存在“引力”的引力理論。
進一步說,這個理論是建立在等效原理及廣義協變原理這兩個基本假設之上的。等效原理是從物體的慣性質量與引力質量相等這個基本事實出發,認為引力與加速係中的慣性力等效,兩者原則上是無法區分的;廣義協變原理,可以認為是等效原理的一種數學表示,即認為反映物理規律的一切微分方程應當在所有參考係中保持形式不變,也可以說認為一切參考係是平等的,從而打破了狹義相對論中慣性係的特殊地位,由於參考係選擇的任意性而得名為廣義相對論。
我們知道,牛頓的萬有引力定律認為,一切有質量的物體均相互吸引,這是一種靜態的超距作用。
在廣義相對論中物質產生引力場的規律由愛因斯坦場方程表示,它所反映的引力作用是動態的,以光速來傳遞的。
廣義相對論是比牛頓引力論更一般的理論,牛頓引力論隻是廣義相對論的弱場近似。所謂弱場是指物體在引力場中的引力能遠小於固有能,力場中,才顯示出兩者的差別,這時必須應用廣義相對論才能正確處理引力問題。
廣義相對論在1915年建立後,愛因斯坦就提出了可以從三個方麵來檢驗其正確性,即所謂三大實驗驗證。這就是光線在太陽附近的偏折,水星近日點的進動以及光譜線在引力場中的頻移,這些不久即為當時的實驗觀測所證實。以後又有人設計了雷達回波時間延遲實驗,很快在更高精度上證實了廣義相對論。60年代天文學上的一係列新發現:3K微波背景輻射、脈衝星、類星體、X射電源等新的天體物理觀測都有力地支持了廣義相對論,從而使人們對廣義相對論的興趣由冷轉熱。特別是應用廣義相對論來研究天體物理和宇宙學,已成為物理學中的一個熱門前沿。
愛因斯坦一直把廣義相對論看作是自己一生中最重要的科學成果,他說過,“要是我沒有發現狹義相對論,也會有別人發現的,問題已經成熟。但是我認為,廣義相對論不一樣。”確實,廣義相對論比狹義相對論包含了更加深刻的思想,這一全新的引力理論至今仍是一個最美好的引力理論。沒有大膽的革新精神和不屈不撓的毅力,沒有敏銳的理論直覺能力和堅實的數學基礎,是不可能建立起廣義相對論的。偉大的科學家湯姆遜曾經把廣義相對論稱作為人類曆史上最偉大的成就之一。
狹義相對論
狹義相對論是建立在四維時空觀上的一個理論,因此要弄清相對論的內容,要先對相對論的時空觀有個大體了解。在數學上有各種多維空間,但目前為止,我們認識的物理世界隻是四維,即三維空間加一維時間。現代微觀物理學提到的高維空間是另一層意思,隻有數學意義,在此不做討論。
四維時空是構成真實世界的最低維度,我們的世界恰好是四維,至於高維真實空間,至少現在我們還無法感知。一把尺子在三維空間裏(不含時間)轉動,其長度不變,但旋轉它時,它的各坐標值均發生了變化,且坐標之間是有聯係的。四維時空的意義就是時間是第四維坐標,它與空間坐標是有聯係的,也就是說時空是統一的,不可分割的整體,它們是一種”此消彼長”的關係。
四維時空不僅限於此,由質能關係知,質量和能量實際是一回事,質量(或能量)並不是獨立的,而是與運動狀態相關的,比如速度越大,質量越大。在四維時空裏,質量(或能量)實際是四維動量的第四維分量,動量是描述物質運動的量,因此質量與運動狀態有關就是理所當然的了。在四維時空裏,動量和能量實現了統一,稱為能量動量四矢。另外在四維時空裏還定義了四維速度,四維加速度,四維力,電磁場方程組的四維形式等。值得一提的是,電磁場方程組的四維形式更加完美,完全統一了電和磁,電場和磁場用一個統一的電磁場張量來描述。四維時空的物理定律比三維定律要完美的多,這說明我們的世界的確是四維的。可以說至少它比牛頓力學要完美的多。至少由它的完美性,我們不能對它妄加懷疑。
相對論中,時間與空間構成了一個不可分割的整體——四維時空,能量與動量也構成了一個不可分割的整體——四維動量。這說明自然界一些看似毫不相幹的量之間可能存在深刻的聯係。在今後論及廣義相對論時我們還會看到,時空與能量動量四矢之間也存在著深刻的聯係。
物質在相互作用中作永恒的運動,沒有不運動的物質,也沒有無物質的運動,由於物質是在相互聯係,相互作用中運動的,因此,必須在物質的相互關係中描述運動,而不可能孤立的描述運動。也就是說,運動必須有一個參考物,這個參考物就是參考係。
伽利略曾經指出,運動的船與靜止的船上的運動不可區分,也就是說,當你在封閉的船艙裏,與外界完全隔絕,那麽即使你擁有最發達的頭腦,最先進的儀器,也無從感知你的船是勻速運動,還是靜止。更無從感知速度的大小,因為沒有參考。比如,我們不知道我們整個宇宙的整體運動狀態,因為宇宙是封閉的。愛因斯坦將其引用,作為狹義相對論的第一個基本原理:狹義相對性原理。其內容是:慣性係之間完全等價,不可區分。
著名的麥克爾遜--莫雷實驗徹底否定了光的以太學說,得出了光與參考係無關的結論。也就是說,無論你站在地上,還是站在飛奔的火車上,測得的光速都是一樣的。這就是狹義相對論的第二個基本原理,光速不變原理。
由這兩條基本原理可以直接推導出相對論的坐標變換式,速度變換式等所有的狹義相對論內容。比如速度變幻,與傳統的法則相矛盾,但實踐證明是正確的,比如一輛火車速度是10m/s,一個人在車上相對車的速度也是10m/s,地麵上的人看到車上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情況下,這種相對論效應完全可以忽略,但在接近光速時,這種效應明顯增大,比如,火車速度是0。99倍光速,人的速度也是0。99倍光速,那麽地麵觀測者的結論不是1。98倍光速,而是0。999949倍光速。車上的人看到後麵的射來的光也沒有變慢,對他來說也是光速。因此,從這個意義上說,光速是不可超越的,因為無論在那個參考係,光速都是不變的。速度變換已經被粒子物理學的無數實驗證明,是無可挑剔的。正因為光的這一獨特性質,因此被選為四維時空的唯一標尺。