個人資料
正文

Tofersen 臨床試驗嚴重神經係統不良事件

(2025-10-10 23:14:25) 下一個

Tofersen 肌萎縮側索硬化症臨床試驗中的嚴重神經係統不良事件

https://onlinelibrary.wiley.com/doi/10.1002/mus.28372

Alexandra Lovett、Sowmya Chary、Suma Babu、Gaëlle Bruneteau、Jonathan D. Glass、Merete Karlsborg、Shafeeq Ladha…… 查看所有作者

2025年2月27日
 

資金:本研究由 Biogen 資助,作者包括 Biogen 員工。Biogen 為本文的醫學寫作提供了資金支持;Yien Liu 博士(Excel Scientific Solutions,康涅狄格州費爾菲爾德)提供了醫學寫作支持,Cara Farrell(Excel Scientific Solutions,康涅狄格州費爾菲爾德)根據期刊要求對稿件進行了文字編輯和風格調整。

Alexandra Lovett、Toby A. Ferguson、Thos Cochrane 和 Laura Fanning 在研究進行時。

摘要

引言/目的

Tofersen 已獲批用於治療因超氧化物歧化酶 1 突變 (SOD1-ALS) 引起的肌萎縮側索硬化症 (ALS)。本文報告了 Tofersen 臨床試驗中 SOD1-ALS 患者發生的嚴重神經係統不良事件 (AE)。

方法

本文描述了 Tofersen 臨床試驗中報告的脊髓炎、神經根炎、無菌性腦膜炎和視乳頭水腫等嚴重神經係統不良事件。嚴重不良事件的定義符合國際協調會議 (ICHC) 指南,臨床試驗中的神經係統不良事件由研究者根據症狀、臨床檢查結果和診斷檢查進行診斷。

結果

10 名受試者(約占接受 100 mg 托芬森治療的試驗受試者的 7%)共出現 12 起嚴重的神經係統不良事件,包括 4 起脊髓炎、2 起神經根炎、2 起無菌性腦膜炎以及 4 起顱內高壓 (ICH) 和/或視乳頭水腫。除一例事件外,其餘所有事件均自行緩解、通過中斷/調整給藥或聯合治療緩解。一例事件持續存在,但截至 2022 年 12 月有所好轉。雖然有 3 例事件導致托芬森治療終止,但其他所有受試者均能繼續接受治療。無危及生命或致命事件。

討論

一些反義寡核苷酸 (ASO) 已被描述具有促炎特性。已有報道顯示,使用努西那生 (nusinersen) 可導致無菌性腦膜炎;然而,ASO 治療尚未報道脊髓炎、神經根炎、顱內壓增高和視乳頭水腫。在評估托弗森治療SOD1-ALS的總體獲益/風險時,應考慮這些神經係統不良事件。開放標簽擴展和擴大使用計劃的安全性數據將繼續描述這些事件,並進一步闡明托弗森在SOD1-ALS治療中的安全性。

1 引言

超氧化物歧化酶1 (SOD1) 基因突變會導致約2%的ALS患者患上肌萎縮側索硬化症 (ALS)。SOD1突變通過突變SOD1蛋白的毒性功能獲得導致運動神經元死亡[1-4]。

托弗森是一種鞘內注射的反義寡核苷酸 (ASO),旨在特異性介導RNase H依賴的SOD1信使RNA降解,從而減少SOD1蛋白的合成[5-7]。 Tofersen 已在一項由三部分組成的 1/2/3 期研究(單次遞增劑量 [SAD]、多次遞增劑量 [MAD] 和 3 期研究 [VALOR])及其開放標簽擴展研究 (OLE) 中進行了評估,目前正在進行的 3 期 ATLAS 研究中對其進行評估。

在已完成的 MAD 研究中、已完成的 3 期 VALOR 研究中和 OLE 研究中,截至 2022 年 7 月 15 日,147 名參與者至少接受了 1 劑 100 mg 的 tofersen,總暴露時間為 312.56 參與者年;100 mg 劑量組出現的大多數不良事件 (AE) 為輕度至中度,與 ALS 疾病進展、腰椎穿刺 (LP) 相關,或為普通人群中常見的事件 [8, 9]。一些受試者曾出現嚴重的神經係統不良事件,包括脊髓炎、神經根炎、無菌性腦膜炎以及顱內高壓 (ICH) 和/或視乳頭水腫。我們在此報告 MAD、VALOR 和 OLE 臨床試驗中受試者的嚴重神經係統不良事件,這些不良事件均發生在接受 100 毫克 tofersen 治療的受試者中。

2 方法
這些試驗的方案和統計分析計劃此前已發表 [8, 9]。SAD 研究是一項隨機(3:1)、雙盲、安慰劑對照的托弗森研究,納入 20 名 ALS 患者,評估了 10、20、40 和 60 mg 的托弗森劑量。MAD 研究是一項隨機(3:1)、雙盲、安慰劑對照的托弗森研究,納入 50 名 SOD1-ALS 患者,評估了每兩周一次的負荷劑量,隨後每月兩次的維持劑量,分別為 20、40、60 和 100 mg 的托弗森 [8]。SAD 和 MAD 研究評估了托弗森的安全性、耐受性和藥代動力學 (PK)。 VALOR 是一項 3 期隨機(2:1)、多中心、雙盲、安慰劑對照試驗,納入了 108 名 SOD1-ALS 患者,旨在評估托弗森的療效、安全性、耐受性、藥代動力學和藥效動力學 [9]。VALOR 患者隨機分配,在第一個月內每兩周注射一次托弗森,每次 3 次,隨後每月服用 100 毫克托弗森或安慰劑維持劑量,共 5 個月 [9]。OLE 納入了符合條件的 SOD1-ALS 患者(139 名入組),他們已完成 SAD、MAD 或 VALOR 研究。OLE 中的一些患者最初接受了較低劑量的托弗森(20、40 或 60 毫克),以從 SAD 或 MAD 隊列過渡;在評估了 MAD 的安全性數據後,OLE 劑量水平增加到 100 毫克。

本研究報告了自首次給藥至截至2022年7月15日中期數據截取日的最後一次研究訪視期間發生的不良事件 (AE),以及自簽署知情同意書至截至同一數據截取日的最後一次研究訪視期間發生的嚴重不良事件 (SAE)。如適用,截至2022年12月的事件的額外隨訪信息已報告在病例敘述中。根據國際協調會E2A,SAE定義為任何不良醫療事件,在任何劑量下均導致死亡、危及生命、需要住院治療或延長現有住院時間、導致持續性或嚴重的殘疾/喪失工作能力、導致先天性異常,或研究者認為具有醫學重要性的事件[10]。嚴重神經係統不良事件包括符合嚴重標準的脊髓炎、神經根炎、無菌性腦膜炎或腦出血/視乳頭水腫等任何不良事件。

研究人員根據症狀、臨床檢查結果和診斷檢查(包括磁共振成像 (MRI) 和腦脊液 (CSF) 分析)診斷出嚴重的神經係統不良事件。每次給藥前均進行腦脊液取樣。常規腦脊液實驗室研究,包括腦脊液白細胞計數 (WBC) 和腦脊液蛋白,在當地實驗室進行分析,其中正常上限由每個當地實驗室定義,腦脊液白細胞計數為 0 至 10 個細胞/μL,腦脊液蛋白為 30 至 60 mg/dL。高腦脊液蛋白定義為超過進行分析的當地實驗室參考範圍的正常上限的值。結果部分報告的升高轉變包括從正常基線腦脊液蛋白(在參考範圍內)到高、低基線腦脊液蛋白(低於正常下限)到高以及未知基線腦脊液蛋白到高。根據方案,如果事件“合理可能”是由研究藥物引起的,則研究者將事件評估為與托弗森相關,潛在支持因素包括與研究藥物的時間關係、基於托弗森作用機製的生物學合理性、再次激發陽性、停藥或減量後症狀改善,或缺乏其他解釋。嚴重不良事件 (SAE) 的消退由研究者決定。

2.1 標準方案批準、注冊和患者同意
托弗森臨床試驗[8, 9]按照國際協調會的《藥物臨床試驗質量管理規範》和《赫爾辛基宣言》中概述的倫理原則進行。方案經相關倫理委員會批準。參與者或其法定代表人提供了書麵知情同意書。

提供的描述包含來自百健臨床試驗數據庫和全球藥物警戒數據的信息。腦脊液值是在診斷性LPs期間作為報告事件的一部分獲取的,或在臨床訪視期間給藥前獲取的。本文列出的腦脊液值由當地實驗室分析。

3 結果
共計147名參與者至少接受過1劑100 mg tofersen(圖1),其中145名(98.6%)報告至少出現1次不良事件。最常見的不良事件是與ALS自然病程相符的事件、普通人群中常見的疾病或與LP相關的事件[8, 9]。

詳情見圖片後的標題。
圖1
在圖表查看器中打開
PowerPoint
接受以下治療的臨床試驗參與者
2 Fāngfǎ

fersen 100 mg。N = 147,包括所有接受至少 1 劑 tofersen 100 mg 的 SOD1-ALS 參與者。20 名參與者參加了 SAD,50 名參與者參加了 MAD(包括 2 名在 32 和 42 周的洗脫期後曾參加過 SAD 的參與者)[8],108 名參與者參加了 VALOR(tofersen 100 mg 治療組 72 名,安慰劑組 36 名)[9]。在參加 SAD 和/或 MAD 研究的 68 名參與者中,43 名參與者在 MAD 和/或 OLE 研究中接受了至少 1 劑 tofersen 100 mg。在 VALOR 研究中接受安慰劑的 36 名參與者中,32 名參與者隨後參加了 OLE 並接受了至少 1 劑 tofersen 100 mg。 MAD,多次遞增劑量;OLE,開放標簽擴展;SAD,單次遞增劑量。
Tofersen 給藥常與腦脊液細胞增多和腦脊液蛋白升高相關;在 147 名接受 100 mg Tofersen 治療的受試者中,79.6% 的受試者至少有 1 次腦脊液白細胞計數 > 10 個/μL,89.7% 的受試者腦脊液蛋白升高。根據研究者報告,這些腦脊液異常中的大多數並未被報告為不良事件;24.5% 的受試者報告了 MedDRA 首選術語腦脊液蛋白升高的不良事件,16.3% 的受試者報告了腦脊液白細胞計數升高的不良事件,8.8% 的受試者報告了腦脊液細胞增多的不良事件。所有報告的不良事件均未導致研究藥物停用或退出研究(圖 2 和圖 3)。

詳情見圖後標題。
圖 2
在圖表查看器中打開
PowerPoint
截至 2022 年 7 月 15 日,VALOR 和 OLE 研究中按訪視分組的腦脊液蛋白 (A) 和白細胞 (B) 水平。陰影框代表第 25 至第 75 百分位數,晶須代表最遠的數據點。異常值用 + 或 ° 表示,具體取決於參與者分別屬於托弗森早期啟動組還是托弗森延遲啟動組。每個子圖下方顯示了在指定訪視時有數據的參與者數量。黃色虛線表示 VALOR 的結束和 OLE 的開始。延遲啟動托弗森 100 毫克的參與者(藍色)在 VALOR 中接受安慰劑,然後在 OLE 中接受托弗森 100 毫克;早期啟動托弗森 100 毫克的參與者(紅色)在 VALOR 和 OLE 中均接受了托弗森 100 毫克。本圖未包含因數據輸入錯誤而被識別的異常值。CSF,腦脊液;DS,延遲開始;ES,提前開始;OLE,開放標簽擴展;tof,托弗森;W,周;WBC,白細胞。
詳情見圖片後的標題。
圖 3
在圖表查看器中打開
PowerPoint
截至 2022 年 7 月 15 日,VALOR 和 OLE 研究中每位參與者的 CSF 蛋白峰值 (A) 和 CSF WBC 峰值 (B)。這些圖中顯示了每位參與者的 CSF WBC 和蛋白質峰值,無論是在試管 1 還是試管 2 中。參與者 2、7 和 8 在事件發生時的 CSF WBC 和/或 CSF 蛋白值(表 1)高於臨床試驗數據庫中的峰值;這些值是在臨床試驗之外獲得的診斷值,並且間隔比通常在預定的臨床試驗訪視中測量的間隔更短。被識別為數據輸入錯誤的數據點被排除,並使用同一參與者的下一個最高峰值繪製此圖。CSF,腦脊液;OLE,開放標簽擴展;WBC,白細胞。
截至2022年7月15日,在147名接受托福森100毫克治療的參與者中,有10名(6.8%)在托福森試驗中出現了嚴重的神經係統不良事件。接受安慰劑治療的參與者未出現類似事件。表1簡要描述了這些事件。更詳細的參與者描述可在附錄中找到(支持信息,包括圖e-1、e-2、e-3和e-4)。總結:

表1. 參與者敘述摘要。參與者 嚴重神經係統不良事件 臨床特征 托弗森與事件的相關性(研究者確定) 事件發生前托弗森的研究劑量數 a 基線腦脊液白細胞 (細胞/μL) b 基線腦脊液蛋白 (mg/dL) b 事件期間腦脊液白細胞 (細胞/μL) c 事件期間腦脊液蛋白 (mg/dL) c 事件期間腦脊液開放壓 (cm H2O) 托弗森采取的措施
1 脊髓炎(報告為神經結節病) 快速進展的無力;麻木;疼痛;失去行走能力 無關 5 11 38 44(77% 淋巴細胞;23% 單核細胞)上升至 88(5 天後) 93 上升至 150(5 天後) 未測量/未報告 持續約 6 個月後停藥
2 脊髓炎 雙腿無力加重;截癱;感覺減退 <T10 皮節;括約肌功能障礙 相關 5 2 31 21(90% 單核細胞) 79 未測量/未報告 已停止
3 脊髓炎 無症狀(因腦脊液細胞增多住院;影像學檢查結果提示脊髓炎) 相關 7 1 44 23(2 周後上升至 94) 58(2 周後上升至 149) 未測量/未報告 繼續
4 雙側視乳頭水腫/顱內高壓 頭痛、視力模糊/下降 相關 14 天 3 21 46 77 3

8 繼續
脊髓炎 無症狀 相關 15 天 38 119 停用兩劑,然後恢複
5 神經根炎 背部/大腿疼痛;足部麻木;失去平衡 相關 24 天 2 70 16 200 未測量/未報告 繼續
6 神經根炎 腰背/腿部疼痛;僵硬;步態改變 相關 1 0 114 9 131 未測量/未報告 繼續
7 無菌性腦膜炎 嚴重頭痛;頸部疼痛;僵硬;發燒 相關 7 0 67.5 144(淋巴細胞為主) 185 未測量/未報告 停藥
8 無菌性腦膜炎 頭痛;頸部僵硬;視力障礙;惡心;意識模糊 相關 5 2 32 317 95 未測量/未報告 繼續
視乳頭水腫 頭痛;耳部/頭皮刺痛;視力障礙;耳鳴; “腦霧” 相關 7 131(97% 淋巴細胞)197 18/20(21,2 個月後)停藥兩次,然後恢複用藥
9 顱內高壓/視乳頭水腫 頭痛;發燒;畏光 相關 18 14 46 43(100% 淋巴細胞)145 25.5 事件被認為已解決後停藥兩次,然後每隔一個月恢複用藥(隨後停藥)
10 顱內高壓/視乳頭水腫 複發性雙顳/雙枕頭痛 相關 9 2 62 23 82 28 未完待續
注:基線腦脊液值來自臨床試驗數據庫;事件期間的腦脊液值來自全球藥物警戒數據。
縮寫:CSF,腦脊液;LP,腰椎穿刺;OLE,開放標簽擴展; SAE,嚴重不良事件;WBC,白細胞。
a 除參與者 5 外,所有研究劑量的 tofersen 均為 100 mg;參與者還額外接受了 40 和 60 mg 的劑量,然後按照敘述中所述將劑量增加到 100 mg。安慰劑劑量不包含在表格的總劑量中。
b 基線腦脊液值是發生 SAE(VALOR 或 OLE)的研究中使用 tofersen 之前的基線值,數據來自臨床試驗數據庫。
c 事件期間的腦脊液值來自全球藥物警戒數據,數據來自臨床試驗中預定的 LP 或臨床試驗預定 LP 之外的診斷性 LP。
d 參與者 4 接受了 3 次負荷劑量,隨後由於 COVID-19 疫情而間隔 3 個月,之後每月接受維持劑量。
四名參與者(2.7%)經曆了脊髓炎嚴重不良事件(SAE),其中三例經研究者評估與托弗森(tofersen)相關。在接受托弗森治療之前,參與者的基線腦脊液白細胞計數(CSF WBC)範圍為1至11個細胞/μL,基線腦脊液蛋白濃度範圍為21至44 mg/dL。隨後,參與者在脊髓炎發作前接受了5至15次托弗森治療,在此期間,CSF WBC範圍為21至44個細胞/μL,CSF蛋白濃度範圍為58至150 mg/dL。不同參與者的治療方法各異,包括靜脈注射甲基潑尼鬆龍聯合口服類固醇逐漸減量、血漿置換、黴酚酸酯和TNFα單克隆抗體治療。托弗森的療效各不相同,參與者可以選擇不間斷地繼續使用托弗森、暫停使用直至病情緩解,或者立即或在一段時間的免疫調節治療後停用托弗森。

兩名參與者(1.4%)出現了神經根炎的嚴重不良事件(SAE),研究者評估這兩項事件均與托弗森(tofersen)相關。在接受托弗森治療之前,參與者的基線腦脊液白細胞計數(CSF WBC)範圍為0至2個細胞/μL,基線腦脊液蛋白水平為70至114 mg/dL。隨後,參與者在出現神經根炎之前接受了1至24次托弗森治療,在此期間,腦脊液白細胞計數範圍為9至16個細胞/μL,腦脊液蛋白水平範圍為131至200 mg/dL。治療包括使用非甾體類抗炎藥或其他鎮痛藥進行支持治療。兩名參與者均繼續服用托弗森,未間斷。

兩名參與者(1.4%)出現了無菌性腦膜炎的嚴重不良事件(SAE),研究者評估這兩項事件均與托弗森相關。在接受托弗森治療之前,受試者的基線腦脊液白細胞計數(CSF WBC)範圍為0至2個細胞/μL,基線腦脊液蛋白水平為32至67.5 mg/dL。隨後,受試者在出現無菌性腦膜炎之前接受了5至7次托弗森治療,在此期間,受試者的腦脊液白細胞計數範圍為144至317個細胞/μL,腦脊液蛋白水平為95至185 mg/dL。治療方案多種多樣,包括經驗性抗生素和抗病毒治療、甲潑尼龍和鎮痛藥。托弗森的療效也各不相同,包括持續用藥和停藥。

4名受試者(2.7%)出現了視乳頭水腫和/或腦出血(ICH)的嚴重不良事件,經研究者評估,均與托弗森相關。在接受托法森治療之前,參與者的基線腦脊液白細胞計數範圍為 2 至 14 個細胞/μL,腦脊液蛋白範圍為 21 至 62 mg/dL。隨後,參與者在出現視乳頭水腫和/或腦出血 (ICH) 之前接受了 7 至 18 次托法森治療,在此期間,腦脊液白細胞計數範圍為 23 至 131 個細胞/μL,腦脊液蛋白範圍為 77 至 197 mg/dL。治療方法多種多樣,包括乙酰唑胺、甲基潑尼鬆龍和鎮痛藥。托法森的作用機製多種多樣,包括持續不間斷治療、中斷治療

在恢複治療前,以及在中斷一段時間後停藥。

4 討論

Tofersen 臨床試驗中已報告嚴重的神經係統不良事件,並已發表在文獻中 [9]。本文提供了截至 2022 年 7 月 15 日報告的這 12 例病例的臨床表現、臨床病程和治療的更多詳細信息,以便進一步告知醫療保健提供者和患者。

Tofersen 臨床試驗中有 4 名參與者(參與者 1-4)具有與脊髓炎一致的臨床或放射學特征;2 名參與者(參與者 3、4)無症狀,僅在影像學檢查評估其他發現後才被發現。1 名參與者(參與者 1)先前患有係統性結節病,但在研究入組時,除葡萄膜炎外,該病處於靜止狀態。盡管該受試者病史複雜,且脊髓炎的發生可能存在其他解釋,但鑒於托弗森臨床試驗中報告的其他脊髓炎病例,為了完整起見,仍將此病例納入。這4名受試者中,有3名接受了水通道蛋白4抗體檢測,該抗體可見於視神經脊髓炎譜係障礙;另有2名接受了抗髓鞘少突膠質細胞糖蛋白 (MOG) 抗體檢測,該抗體可見於MOG-免疫球蛋白G相關腦脊髓炎;但兩種抗體均未檢測到[11]。受試者5和6據稱患有神經根炎。脊髓炎和神經根炎可能是托弗森引起的神經炎症反應的臨床表現。

4 名參與者(參與者 4、8、9、10)出現顱內壓 (ICP) 升高和視乳頭水腫,其中 2 名(參與者 4、8)先前出現過與無菌性腦膜炎相符的特征。腦膜炎可導致顱內壓 (ICP) 升高,可能是通過腦脊液流出障礙和/或腦脊液黏度增加實現的 [12]。1 名參與者(參與者 4)在幾個月內相繼出現無菌性腦膜炎、視乳頭水腫和脊髓炎,這引發了一個問題:顱內壓升高是否是神經炎症反應的另一種表現,這種反應可以統一並部分解釋本文所述所有 10 名參與者的診斷。

托弗森可能通過非炎症機製(例如腦脊液流出阻塞)與顱內壓升高相關。重要的是,與其他鞘內ASO的描述不同[13],所有參與者均未出現腦積水的影像學證據,並且參與者的頭痛、視覺症狀和視乳頭水腫均有所改善——無論是自發改善,還是通過乙酰唑胺和/或類固醇治療得到改善。值得注意的是,4例涉及顱內高壓/視乳頭水腫的事件中有2例發生在有肥胖病史的參與者中,而肥胖是顱內壓升高的已知危險因素[12]。這些參與者未發現靜脈竇血栓形成。

在所有經曆嚴重神經係統事件的參與者中均觀察到腦脊液細胞增多和腦脊液蛋白升高(表1);然而,並非所有報告這些嚴重不良事件的參與者在臨床事件發生時都達到了腦脊液白細胞/蛋白的峰值(圖2和圖3),並且在接受托弗森治療但未經曆嚴重神經係統不良事件的參與者中,腦脊液白細胞和/或蛋白的類似升高也很常見。因此,這些腦脊液實驗室檢查結果並不能預測神經係統嚴重不良事件 (SAE) 的發生。此外,對 SOD1 突變變異體的回顧並未證明這些嚴重神經係統不良事件的易感性。

鞘內抗氧化酶 (ASO) 治療是一種相對較新的針對神經遺傳疾病的策略。一些抗氧化酶 (ASO) 被描述為具有促炎特性,這歸因於其硫代磷酸酯骨架,該骨架可通過 H 因子結合激活補體 [14, 15],從而增加補體裂解產物 Bb 和 C3a 的產生 [14]。然而,對抗氧化酶 (ASO) 反應中補體激活的描述在非人類靈長類動物中最為明顯,而這些動物可能比人類更容易受到影響 [14, 16]。全身給藥的抗氧化酶 (ASO) 可在動物淋巴結中積聚,這可能表明它們具有誘發炎症的潛力 [14, 15]。 ASO物質也可在巨噬細胞內積聚,ASO可導致細胞活化、補體途徑與Toll樣受體之間的串擾以及細胞因子的產生,這些都可能引發促炎反應[14, 15]。

關於鞘內ASO治療臨床安全性的已發表文獻有限。我們進行了文獻檢索,以確定其他獲批用於治療神經係統疾病的鞘內ASO治療的安全性,結果發現了幾篇描述nusinersen在臨床試驗和上市後安全性的論文。目前似乎尚未報道nusinersen引起脊髓炎、神經根炎、顱內壓升高和視乳頭水腫等事件。nusinersen曾報道過無菌性腦膜炎,並且

已被歐洲藥品管理局列為不良反應[17-19]。nusinersen 引起無菌性腦膜炎的機製尚不清楚,但可能是由於 nusinersen 介導的免疫超敏反應,和/或藥物給藥途徑對腦膜的直接刺激[18]。

雖然在 SOD1-ALS 患者中觀察到免疫失調[20-23],但很少有文獻表明這些神經炎症事件與疾病本身之間存在聯係。一項流行病學研究報告稱,某些自身免疫性疾病會增加 ALS 的風險[24],並且已有 3 例已發表的 ALS 和血清陽性 NMO-SD 同時發生的病例報告,每例報告都描述了兩種疾病的發病間隔數年[25-27]。

由於這些事件僅在接受托弗森治療的受試者中報告,而未在接受安慰劑治療的受試者中報告,因此它們很可能是由托弗森引起的。

鑒於脊髓炎、神經根炎、無菌性腦膜炎以及顱內壓增高/視乳頭水腫等嚴重神經係統事件的風險,處方醫生在考慮使用托弗森治療患者時,應考慮整體獲益/風險狀況。托弗森自2021年7月起通過擴展獲取計劃 (EAP) 在全球範圍內上市。OLE 研究和 EAP [28, 29] 收集的安全性數據將有助於持續表征這些神經係統事件,並進一步闡明托弗森在 SOD1-ALS 疾病譜中的安全性。

5 結論

一些接受 100 mg 托弗森治療的受試者報告了嚴重的神經係統事件。盡管一些事件導致停用托弗森,但大多數受試者能夠繼續服用托弗森,並且大多數事件可自行緩解、通過中斷/停止給藥或按照一般標準治療得到緩解。一些患有脊髓炎和神經根炎的受試者接受了口服或靜脈注射皮質類固醇或其他免疫抑製治療,病情有所好轉。然而,目前尚無足夠數據來確定這些幹預措施是否有助於改變這些事件的進程。持續收集臨床試驗和上市後安全性數據將有助於為托弗森相關脊髓炎和神經根炎的潛在治療提供信息。未來的安全性數據也將有助於進一步表征托弗森的長期安全性。治療SOD1-ALS患者的醫生應注意這些嚴重的神經係統事件,並應權衡這些風險與托弗森治療的益處。

Serious Neurologic Adverse Events in Tofersen Clinical Trials for Amyotrophic Lateral Sclerosis

https://onlinelibrary.wiley.com/doi/10.1002/mus.28372?

Alexandra LovettSowmya CharySuma BabuGaëlle BruneteauJonathan D. GlassMerete KarlsborgShafeeq Ladha

27 February 2025
 
Funding: This work was supported by Biogen and authors include Biogen employees. Biogen provided funding for medical writing support in the development of this paper; Yien Liu, PhD (Excel Scientific Solutions, Fairfield, CT) provided medical writing support, and Cara Farrell (Excel Scientific Solutions, Fairfield, CT) copyedited and styled the manuscript per journal requirements.

Alexandra Lovett, Toby A. Ferguson, Thos Cochrane, and Laura Fanning at the time the study was conducted.

ABSTRACT

Introduction/Aims

Tofersen is approved for the treatment of amyotrophic lateral sclerosis (ALS) due to superoxide dismutase 1 mutations (SOD1-ALS). Here we report serious neurologic adverse events (AEs) that occurred in the tofersen clinical trials in people with SOD1-ALS.

Methods

Serious neurologic AEs of myelitis, radiculitis, aseptic meningitis, and papilledema reported in the tofersen clinical trials are described. Serious AEs were defined according to International Conference for Harmonization guidelines, and neurologic AEs in clinical trials were diagnosed by investigators based on symptoms, clinical examination findings, and diagnostic workup.

Results

Ten participants (approximately 7% of tofersen 100-mg–treated trial participants) experienced a total of 12 serious neurologic AEs—4 of myelitis, 2 of radiculitis, 2 of aseptic meningitis, and 4 of intracranial hypertension (ICH) and/or papilledema. All events but one resolved either spontaneously, with dosing interruption/modification, or with concomitant therapies. One event was ongoing but improved as of December 2022. While 3 events led to tofersen treatment discontinuation, all other participants were able to remain on treatment. No event was life-threatening or fatal.

Discussion

Some antisense oligonucleotides (ASOs) have been described as having pro-inflammatory properties. Aseptic meningitis has been reported with nusinersen; however, myelitis, radiculitis, increased intracranial pressure, and papilledema have not been reported with ASO treatment. These neurologic AEs should be considered when assessing the overall benefit/risk of tofersen treatment for SOD1-ALS. Safety data from the open-label extension and expanded access program will continue to characterize these events and further inform the safety profile of tofersen in SOD1-ALS.

1 Introduction

Mutations in the superoxide dismutase 1 (SOD1) gene cause amyotrophic lateral sclerosis (ALS) in approximately 2% of people living with ALS. SOD1 mutations cause motor neuron death through toxic gain of function of the mutant SOD1 protein [1-4].

Tofersen is an intrathecally administered antisense oligonucleotide (ASO) designed to specifically mediate RNase H-dependent SOD1 messenger RNA degradation to reduce synthesis of SOD1 protein [5-7]. Tofersen has been evaluated in a 3-part Phase 1/2/3 study (single ascending dose [SAD], multiple ascending dose [MAD], and Phase 3 [VALOR]) and its open-label extension (OLE), and is being evaluated in the ongoing Phase 3 ATLAS study.

In the completed MAD, completed phase 3 VALOR, and OLE studies, 147 participants have received at least 1 dose of tofersen 100 mg for a total of 312.56 participant-years of exposure as of July 15, 2022; most adverse events (AEs) at the 100 mg dose were of mild-to-moderate severity and were related to ALS disease progression, lumbar puncture (LP), or were events commonly seen in the general population [89]. Some participants have had serious neurologic AEs including myelitis, radiculitis, aseptic meningitis, and intracranial hypertension (ICH) and/or papilledema. We report here the serious neurologic AEs of participants in the MAD, VALOR, and OLE clinical trials, all of which occurred in participants receiving 100 mg of tofersen.

2 Methods

The protocols and statistical analysis plans for these trials have been previously published [89]. The SAD study was a randomized (3:1), double-blind, placebo-controlled study of tofersen in 20 participants with ALS and assessed 10, 20, 40, and 60 mg of tofersen. The MAD study was a randomized (3:1), double-blind, placebo-controlled study of tofersen in 50 participants with SOD1-ALS and assessed 3 biweekly loading doses followed by 2 monthly maintenance doses of 20, 40, 60, and 100 mg of tofersen [8]. The SAD and MAD studies evaluated the safety, tolerability, and pharmacokinetics (PK) of tofersen. VALOR was a Phase 3, randomized (2:1), multicenter, double-blind, placebo-controlled trial in 108 participants with SOD1-ALS evaluating the efficacy, safety, tolerability, PK, and pharmacodynamics of tofersen [9]. VALOR participants were randomized to receive 3 loading doses administered once every 2 weeks over the first month followed by 5 monthly maintenance doses of tofersen (100 mg) or placebo for a total of 6 months [9]. The OLE includes eligible participants (139 enrolled) with SOD1-ALS who completed the SAD, MAD, or VALOR studies. Some participants in the OLE originally received lower doses of tofersen (20, 40, or 60 mg) if transitioning from the SAD or MAD cohorts; OLE dose level was increased to 100 mg after evaluation of safety data from the MAD.

AEs experienced between the time of the first dose of study treatment and the last study visit as of a July 15, 2022, interim data cut, and serious AEs (SAEs) experienced between the signing of the informed consent form and the final study visit as of the same data cut date were reported. Additional reported follow-up information for the events up through December 2022, where applicable, are included in the case narratives. In accordance with International Council for Harmonization E2A, an SAE was defined as any untoward medical occurrence that at any dose results in death, is life-threatening, requires inpatient hospitalization or prolongs existing hospitalization, results in persistent or significant disability/incapacity, results in a congenital anomaly, or is a medically important event in the opinion of the Investigator [10]. Serious neurologic AEs included any AE of myelitis, radiculitis, aseptic meningitis, or ICH/papilledema that met serious criteria.

Serious neurologic AEs were diagnosed by investigators based on symptoms, clinical examination findings, and diagnostic workup, including magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) analysis. CSF sampling was done pre-dosing at each dosing visit. Routine CSF laboratory studies, including CSF white blood cell count (WBC) and CSF protein, were analyzed at local laboratories where the upper limit of normal was defined by each local laboratory and ranged from 0 to 10 cells/μL for CSF WBC and 30 to 60 mg/dL for CSF protein. High CSF protein was defined as the value exceeding the upper limit of normal for the local laboratory reference ranges where the analyses were performed. The shift to high reported in the results section includes shift from normal baseline CSF protein (within the reference range) to high, low baseline CSF protein (below the lower limit of normal) to high, and unknown baseline CSF protein to high. Per protocol, events were assessed by the investigator as related to tofersen if there was a “reasonable possibility” that the event was caused by the study drug, with potential supporting factors including a temporal relationship to the study drug, biological plausibility based on the mechanism of action of tofersen, a positive rechallenge, improvement following discontinuation or reduction in the dose, or lack of an alternative explanation. SAE resolution was determined by the investigator.

2.1 Standard Protocol Approvals, Registrations, and Patient Consents

The tofersen clinical trials [89] were conducted in accordance with Good Clinical Practice Guidelines of the International Council for Harmonization and the ethical principles outlined in the Declaration of Helsinki. The protocols were approved by relevant ethics committees. Written informed consent was provided by the participants or their legal representatives.

Presented descriptions include information from the Biogen clinical trial database and global pharmacovigilance data. CSF values were obtained during diagnostic LPs as part of the event reported or were obtained pre-dose during the clinical visit. CSF values listed herein were analyzed at local laboratories.

3 Results

A total of 147 participants were exposed to at least 1 dose of tofersen 100 mg (Figure 1), 145 (98.6%) of whom reported at least 1 AE. The most commonly reported AEs were events consistent with the natural history of ALS, common conditions in the general population, or events related to the LP [89].

 

Details are in the caption following the image

Clinical trial participants who received tofersen 100 mg. N = 147 inclusive of all participants with SOD1-ALS who received at least 1 dose of tofersen 100 mg. 20 participants enrolled in the SAD, 50 participants enrolled in the MAD (including 2 participants who were previously enrolled in the SAD following washout periods of 32 and 42 weeks) [8], and 108 participants enrolled in VALOR (72 in the tofersen 100 mg treatment group and 36 in the placebo group) [9]. Of the 68 participants enrolled in the SAD and/or MAD studies, 43 participants received at least 1 dose of tofersen 100 mg in the MAD and/or OLE studies. Of the 36 participants who received placebo in the VALOR study, 32 participants subsequently enrolled in the OLE and received at least 1 dose of tofersen 100 mg. MAD, multiple ascending dose; OLE, open-label extension; SAD, single ascending dose.

Tofersen administration was commonly associated with pleocytosis and elevated CSF protein; of the 147 participants exposed to tofersen 100 mg, 79.6% had at least 1 CSF WBC value > 10 cells/μL and 89.7% had a shift to high in CSF protein. The majority of these CSF abnormalities were not reported as AEs per the Investigator; 24.5% of participants reported an AE of MedDRA preferred term CSF protein increased, 16.3% reported an AE of CSF WBC count increased, and 8.8% reported an AE of pleocytosis. None of the reported AEs led to study drug discontinuation or withdrawal from the studies (Figures 2 and 3).

 

Details are in the caption following the image

CSF protein (A) and WBC (B) levels across the VALOR and OLE studies by visit as of July 15, 2022. Shaded boxes represent the 25th to 75th percentile, whiskers represent furthest data point. Outliers are denoted by a + or °, depending on whether the participant was in the early-start tofersen group vs. delayed-start tofersen group, respectively. Number of participants with data at the specified visit is indicated below each sub-figure. Yellow dashed line indicates the end of VALOR and the start of the OLE. Delayed-start tofersen 100-mg participants (blue) received placebo in VALOR followed by tofersen 100 mg in the OLE; early-start tofersen 100-mg participants (red) received tofersen 100 mg in VALOR and the OLE. Outliers identified as data entry errors are not included in this figure. CSF, cerebrospinal fluid; DS, delayed-start; ES, early-start; OLE, open-label extension; tof, tofersen; W, week; WBC, white blood cell.
 

Details are in the caption following the image

Peak CSF protein (A) and peak CSF WBC (B) Levels for each individual participant across the VALOR and OLE studies as of July 15, 2022. The peak value for each CSF WBC and protein, whether in tube 1 or tube 2, is indicated in these plots for each individual participant. Participants 2, 7, and 8 had higher CSF WBC and/or CSF protein values at the time of the event (Table 1) than their peak values in the clinical trial database; these values were diagnostic values obtained outside of the clinical trial, and at shorter intervals than typically measured at the scheduled clinical trial visits. Data points that were identified as data entry errors were excluded, and the next highest peak value for the same participant was utilized for this plot. CSF, cerebrospinal fluid; OLE, open-label extension; WBC, white blood cell.

Ten (6.8%) of these 147 tofersen 100-mg–treated participants experienced serious neurologic AEs in the tofersen trials as of July 15, 2022. No similar events were experienced by participants receiving placebo. The events are described briefly in Table 1. More detailed participant descriptions can be found in the supplement (Supporting Information, including Figures e-1, e-2, e-3, and e-4). In summary:

TABLE 1. Summary of Participant Narratives.
Participant Serious neurologic adverse event Clinical features Relatedness of tofersen to event (investigator-determined) Number of study doses of tofersen prior to event Baseline CSF WBC (cells/μL) Baseline CSF protein (mg/dL) CSF WBC during event (cells/μL) CSF protein during event (mg/dL) CSF opening pressure during event (cm H2O) Action taken with tofersen
1 Myelitis (reported as neurosarcoidosis) Rapidly progressive weakness; numbness; pain; loss of ambulation Unrelated 5 11 38 44 (77% lymphocytes; 23% monocytes) rising to 88 (after 5 days) 93 rising to 150 (after 5 days) Not measured/not reported Continued for ~6 months then discontinuation
2 Myelitis Worsening bilateral leg weakness; paraplegia; hypoesthesia <T10 dermatome; sphincter dysfunction Related 5 2 31 21 (90% mononuclear cells) 79 Not measured/not reported Discontinued
3 Myelitis Asymptomatic (hospitalized for CSF pleocytosis; imaging findings suggested myelitis) Related 7 1 44 23 (rising to 94 after 2 weeks) 58 (rising to 149 after 2 weeks) Not measured/not reported Continued
4 Bilateral papilledema/intracranial hypertension Headaches, blurred/deteriorating vision Related 14 3 21 46 77 38 Continued
Myelitis Asymptomatic Related 15 38 119 Two doses held, then resumed
5 Radiculitis Back/thigh pain; foot numbness; loss of balance Related 24 2 70 16 200 Not measured/not reported Continued
6 Radiculitis Low back/leg pain; stiffness; gait changes Related 1 0 114 9 131 Not measured/not reported Continued
7 Aseptic meningitis Severe headache; neck pain; stiffness; fever Related 7 0 67.5 144 (lymphocyte dominant) 185 Not measured/not reported Discontinued
8 Aseptic meningitis Headache; neck stiffness; visual disturbances; nausea; confusion Related 5 2 32 317 95 Not measured/not reported Continued
Papilledema Headache; ear/scalp tingling; visual disturbances; tinnitus; “brain fog” Related 7 131 (97% lymphocytes) 197 18/20 (21, 2 months later) Two doses held, then resumed
9 Intracranial hypertension/papilledema Headache; fever; photophobia Related 18 14 46 43 (100% lymphocytes) 145 25.5 Two doses held after event was considered resolved, then resumed every other month (subsequent discontinuation)
10 Intracranial hypertension/papilledema Recurrent bitemporal/bioccipital headaches Related 9 2 62 23 82 28 Continued
  • Note: Baseline CSF values are obtained from the clinical trial database; CSF values during the event are obtained from the global pharmacovigilance data.
  • Abbreviations: CSF, cerebrospinal fluid; LP, lumbar puncture; OLE, open-label extension; SAE, serious adverse event; WBC, white blood cell.
  • a All study doses of tofersen were 100 mg with the exception of participant 5; participant additionally received doses at 40 and 60 mg before dosing was escalated to 100 mg as outlined in the narrative. Doses of placebo are excluded from the total doses in the table.
  • b Baseline CSF values are the pre-tofersen baseline for the study in which the SAE occurred (VALOR or OLE) and are obtained from the clinical trial database.
  • c CSF values during the event are obtained from the global pharmacovigilance data and were either from scheduled LPs in the clinical trial or from diagnostic LPs outside of the scheduled clinical trial LPs.
  • d Participant 4 received 3 loading doses followed by a 3-month dosing gap due to the COVID-19 pandemic followed by monthly maintenance doses.
 

Four participants (2.7%) experienced SAEs of myelitis, with 3 assessed as related to tofersen by the Investigator. Prior to tofersen treatment the participants had baseline CSF WBC ranging from 1 to 11 cells/μL and baseline CSF protein ranging from 21 to 44 mg/dL. The participants then had a range of 5–15 doses of tofersen prior to the onset of myelitis, during which CSF WBC ranged from 21 to 44 cells/μL, and CSF protein from 58 to 150 mg/dL. Treatment varied among participants, and included intravenous methylprednisolone with oral steroid taper, plasma exchange, mycophenolate mofetil, and TNFα monoclonal antibody therapy. Action with tofersen varied, with participants continuing tofersen without interruption, interrupting until resolution, or discontinuation of tofersen either immediately or after a period of immunomodulatory treatment.

Two participants (1.4%) experienced SAEs of radiculitis, both related to tofersen as assessed by the Investigator. Prior to tofersen treatment, the participants had a baseline range of CSF WBC from 0 to 2 cells/μL, and a baseline CSF protein of 70 to 114 mg/dL. The participants then had a range of 1 to 24 doses of tofersen prior to the onset of radiculitis, during which the CSF WBC ranged from 9 to 16 cells/μL and the CSF protein ranged from 131 to 200 mg/dL. Treatment included supportive care with either nonsteroidal anti-inflammatory drugs or other analgesics. Both continued tofersen without interruption.

Two participants (1.4%) experienced SAEs of aseptic meningitis, both related to tofersen as assessed by the Investigator. Prior to tofersen treatment, the participants had a baseline range of CSF WBC from 0 to 2 cells/μL, and a baseline CSF protein of 32 to 67.5 mg/dL. The participants then received a range of 5 to 7 doses of tofersen prior to the onset of aseptic meningitis, during which the CSF WBC ranged from 144 to 317 cells/μL, and CSF protein from 95 to 185 mg/dL. Treatment varied and included empiric antibiotics and anti-viral therapy, methylprednisolone, and analgesics. Action with tofersen varied, including continuing without interruption and discontinuation.

Four participants (2.7%) experienced SAEs of papilledema and/or ICH, all related to tofersen as assessed by the Investigator. Prior to tofersen treatment, the participants had baseline CSF WBC ranging from 2 to 14 cells/μL, and CSF protein ranging from 21 to 62 mg/dL. The participants then had a range of 7 to 18 doses of tofersen prior to the onset of papilledema and/or ICH during which the CSF WBC ranged from 23 to 131 cells/μL, and the CSF protein from 77 to 197 mg/dL. Treatment varied, and included acetazolamide, methylprednisolone, and analgesics. Action with tofersen varied, and included continuing without interruption, interruption prior to resuming therapy, and discontinuation after a period of interruption.

4 Discussion

Serious neurologic AEs have been reported in tofersen clinical trials and have been published in the literature [9]. In this paper, additional details regarding the presentation, clinical course, and management of these 12 cases reported as of July 15, 2022, are provided to further inform healthcare providers and patients.

Four participants in tofersen clinical trials had clinical or radiographic features consistent with myelitis (participants 1–4); 2 participants (participants 3, 4) were asymptomatic and only discovered following imaging to evaluate other findings. One participant (participant 1) had preexisting systemic sarcoidosis, though it was quiescent at study enrollment apart from uveitis. Although this participant had a complex medical history and potential alternative explanation for the development of myelitis, in the context of the other cases of myelitis reported in the tofersen clinical trials, this case is included for the sake of completeness. Three of these 4 participants were tested for aquaporin-4 antibodies, which can be observed in neuromyelitis optica spectrum disorder, and 2 were tested for anti-myelin oligodendrocyte glycoprotein (MOG) antibodies, which can be observed in MOG-immunoglobulin G-associated-associated encephalomyelitis; neither antibody was detected [11]. Participants 5 and 6 were reported to have radiculitis. Myelitis and radiculitis likely represent clinical manifestations of a neuroinflammatory response to tofersen.

Four participants had events featuring increased intracranial pressure (ICP) with papilledema (participants 4, 8, 9, 10), 2 of whom (participants 4, 8) had preceding features consistent with aseptic meningitis. Meningitis can lead to elevated ICP, possibly through impairment of CSF outflow and/or increased CSF viscosity [12]. In 1 participant (participant 4), the events of aseptic meningitis, papilledema, and myelitis occurred within a few months of each other, which prompts the question of whether increased ICP was another manifestation of a neuroinflammatory response that could unify and partially explain the diagnoses of all 10 participants described herein.

There is a possibility that tofersen is associated with increased ICP via a noninflammatory mechanism such as CSF outflow obstruction. Importantly, there was no imaging evidence of hydrocephalus in any participants, as distinguished from what has been described with other intrathecal ASOs [13], and the participants' headaches, visual symptoms, and papilledema all demonstrated improvement—either spontaneously, or with treatment including acetazolamide and/or steroids. Of note, 2 of the 4 events involving intracranial hypertension/papilledema were in participants with a medical history of obesity, a known risk factor for elevated ICP [12]. Venous sinus thrombosis was not identified in these participants.

CSF pleocytosis and elevated CSF protein were observed in all participants who experienced serious neurologic events (Table 1); however, not all participants who reported these SAEs had their peak CSF WBC/protein values at the time of their clinical event (Figures 2 and 3), and similar elevations in CSF WBC and/or protein were common in tofersen-treated participants who did not experience serious neurologic AEs. These CSF laboratory findings are therefore not predictive of the development of a neurologic SAE. Additionally, review of SOD1 mutation variants did not demonstrate a predisposition to these serious neurologic AEs.

Intrathecal ASO therapy is a relatively novel strategy to target neurogenetic diseases. Some ASOs have been described to have pro-inflammatory properties attributed to their phosphorothioate backbone, which can activate complement through Factor H binding [1415], leading to increased production of complement split products Bb and C3a [14]. However, complement activation in response to ASOs has been best characterized in non-human primates, which may be more susceptible than humans [1416]. Systemically administered ASOs can accumulate in lymph nodes in animals, which may suggest their potential to induce inflammation [1415]. ASO material can also accumulate within macrophages, and ASOs can lead to cellular activation, crosstalk between complement pathways and toll-like receptors, and cytokine production, which can all contribute to a pro-inflammatory response [1415].

Published literature on the clinical safety of intrathecal ASO therapy is limited. A literature search was conducted to identify the safety profile of other intrathecal ASO treatments approved for neurologic diseases, which resulted in several papers describing the safety of nusinersen in clinical trials and in the post-marketing setting. Events of myelitis, radiculitis, increased ICP, and papilledema do not appear to have been described with nusinersen. Aseptic meningitis has been reported with nusinersen, and is listed as an adverse reaction by the European Medicines Agency [17-19]. The mechanism of aseptic meningitis with nusinersen is unclear but may be due to a nusinersen-mediated immunologic hypersensitivity, and/or direct irritation of the meninges by route of drug administration [18].

While immune dysregulation has been observed in SOD1-ALS [20-23], there is very little literature suggesting a link between these neuroinflammatory events seen and the disease itself. One epidemiologic study reported that certain autoimmune diseases conferred an increased risk of ALS [24], and there have been 3 published case reports of co-occurring ALS and seropositive NMO-SD, each describing several years between the onset of the 2 disorders [25-27].

As these events were reported only in tofersen-treated participants and not in placebo-treated participants, they are likely caused by tofersen.

In the context of the risks of serious neurologic events of myelitis, radiculitis, aseptic meningitis, and increased ICP/papilledema, prescribers should consider the overall benefit/risk profile when considering treatment of their patients with tofersen. Tofersen has been available globally via an expanded access program (EAP) since July 2021. Safety data collected in the OLE study and EAP [2829] will allow continued characterization of these neurologic events and further inform the safety profile of tofersen across the SOD1-ALS disease spectrum.

5 Conclusion

Some participants treated with tofersen 100 mg have reported serious neurologic events. Although some events prompted discontinuation of tofersen, most participants were able to remain on tofersen, and most events resolved spontaneously, with dosing interruption/cessation, or with management according to the general standard of care. Some participants with myelitis and radiculitis were treated with oral or intravenous corticosteroids or other immunosuppressive treatments and improved. However, there are inadequate data to determine if these interventions may help modify the course of these events. Continued collection of safety data in clinical trials and in the post-marketing setting will inform potential treatment of tofersen-associated myelitis and radiculitis. Future safety data will also aid in further characterizing the tofersen safety profile over time. Physicians treating people with SOD1-ALS should be aware of these serious neurologic events and should weigh these risks against the benefits of tofersen treatment.

Author Contributions

Alexandra Lovett: conceptualization, methodology, validation, formal analysis, writing – review and editing, writing – original draft, investigation. Sowmya Chary: formal analysis, writing – review and editing, writing – original draft, conceptualization, methodology, validation, investigation. Suma Babu: validation, writing – review and editing, formal analysis, investigation. Gaëlle Bruneteau: formal analysis, validation, writing – review and editing, investigation. Jonathan D. Glass: validation, formal analysis, writing – review and editing, investigation. Merete Karlsborg: formal analysis, validation, writing – review and editing, investigation. Shafeeq Ladha: formal analysis, validation, writing – review and editing, investigation. Keith Mayl: writing – review and editing, formal analysis, validation, investigation. Christopher McDermott: formal analysis, validation, writing – review and editing, investigation. Robert C. Bucelli: formal analysis, writing – review and editing, investigation. Adriano Chiò: formal analysis, writing – review and editing, investigation. Toby A. Ferguson: formal analysis, writing – review and editing, investigation, supervision. Thos Cochrane: conceptualization, methodology, formal analysis, writing – review and editing, writing – original draft, investigation. Stephanie Fradette: conceptualization, methodology, writing – review and editing, formal analysis, writing – original draft, investigation. Karen Smirnakis: formal analysis, methodology, conceptualization, writing – review and editing, supervision, investigation. Jennifer Inra: formal analysis, investigation, writing – review and editing. Sohail Malek: investigation, formal analysis, writing – review and editing. Laura Fanning: methodology, conceptualization, formal analysis, writing – review and editing, writing – original draft, investigation.

Acknowledgments

The authors had full editorial control of the manuscript and provided their final approval of all content. The authors acknowledge Irene Tien, MD, Manjit McNeill, MSc, Siva Vobhilineni, Xin Jin, Hui-Chun Hsu, Annapurna Dudala, Dipti Govindaraju, and Han Zhu for their support in review, quality check, and biostatistical figures; the clinical trial participants; and all of the staff at the clinical trial sites who were involved in their care.

[ 打印 ]
評論
目前還沒有任何評論
登錄後才可評論.