等概率事件和進化論的證偽
(2006-11-20 12:27:05)
下一個
進化論的理論沒有證實也很難證實,因為至今我們還沒有能夠從實驗室製造出人類的基因, 沒有從實驗室實現把其它生物的基因突變成人類的基因。 那篇用概率論來證偽進化論的文章大概說明了為什麽這個實驗的困難, 但是卻不足夠來說明進化論的不正確。
這是一個非常簡單的道理,稍微有點常識的人就知道那篇文章的荒謬之處。 進化論首先強調的是基因突變,從來就沒有假設基因重組是一個等概率事件。這種突變很有可能在非常短的瞬間完成,由於當時的環境適合這種轉變,這種轉變就得以保留下來。 如果現在的環境或者實驗室的環境不利於這種突變的發生,如果僅按照概率來等待這種概率的發生,那麽這種突變就是一個小概率事件,基本上是不可能發生的。 這種小概率的不可能根本無法說明進化論的不可能,而是恰恰相反,它說明了進化論的另一個基本原理:適者生存。
我們不妨再回到這個概率事件吧。父親和兒子的基因並不完全一致,如果按照完全等概率來計算的話,這個事情永遠不可能發生。但是事實上父親和母親的基因重組過程是在非常短時間內完成的,這種重組由於母體環境的適宜而得以順利完成。
這是非常簡單的常識,基因的突變完成根本就無需很長的時間,也從來不是一個重組和另一個重組等概率的排隊事件。我們根本無法想象,父親和母親的基因在重組經過了一個等概率事件。
按照某些人的理論,父親和母親的基因重新組合成嬰兒基因的過程中實現這樣的一個排隊過程:一個核苷酸首先和另一個核苷酸配對,等若幹時間完成另一個配對,直到所有的配對完成;然後突然發現這種組合不是最佳的,重新打開後再一次一次的重新配合;然後再打開,再配合。。。直到找到最佳的配合方案。
這是可能的嗎?這完全不可能。
用等概率事件來解釋基因突變就會導致上文中荒謬的排隊事件,我們稍有常識就會發現這種解釋的荒謬和可笑, 不明白為什麽有些人要一遍一遍地重複這種可笑的行為。
從另一方麵來說,等概率的解釋就相當如說子代的基因是在父親和母親在沒有性關係下隨機發生的。這種小概率事件當然沒有發生,這種常識絕大多數人都能理解,根本用不著所謂的等概率事件的解釋,大概隻有某些神奇掌握了概率理論的人才會這樣解釋。 我們顯然可以看到,作者的父母顯然是用了最適合他們兒子/女兒生存的辦法造出了他,無法理解他們的兒子女兒卻可笑的理解為是他們母親用完全等概率事件的辦法篩選出他的基因。
我以前還舉過一個非常簡單的例子,等概率根本無法解釋誰能滅火。因為按照等概率事件,10的23次方量級的水分子怎麽可能同時跑到了燃燒物質的分子旁邊產生化學變化呢?但是非常顯然,在某種特定的時候,這種事件的發生完全是瞬間完成的, 根本就不存在什麽等概率的隨機事件。
難道我們能用等概率的隨機事件來解釋一切已經發生的事件嗎? 我相信答案是顯然的,所以我希望有些人不要用這種無聊的事情來混淆視聽了。
"We share more than 95 percent of our genetic blueprint with chimps," explained Dr. Daniel Geschwind, principal investigator and Gordon and Virginia MacDonald Distinguished Professor of Human Genetics at the David Geffen School of Medicine. "What sets us apart from chimps are our brains: homo sapiens means 'the knowing man.'
"During evolution, changes in some genes altered how the human brain functions," he added. "Our research has identified an entirely new way to identify those genes in the small portion of our DNA that differs from the chimpanzee's."
By evaluating the correlated activity of thousands of genes, the UCLA team identified not just individual genes, but entire networks of interconnected genes whose expression patterns within the brains of humans varied from those in the chimpanzee.
"Genes don't operate in isolation each functions within a system of related genes," said first author Michael Oldham, UCLA genetics researcher. "If we examined each gene individually, it would be similar to reading every fifth word in a paragraph you don't get to see how each word relates to the other. So instead we used a systems biology approach to study each gene within its context."
The scientists identified networks of genes that correspond to specific brain regions. When they compared these networks between humans and chimps, they found that the gene networks differed the most widely in the cerebral cortex -- the brain's most highly evolved region, which is three times larger in humans than chimps.
Secondly, the researchers discovered that many of the genes that play a central role in cerebral cortex networks in humans, but not in the chimpanzee, also show significant changes at the DNA level.
"When we see alterations in a gene network that correspond to functional changes in the genome, it implies that these differences are very meaningful," said Oldham. "This finding supports the theory that variations in the DNA sequence contributed to human evolution."
Relying on a new analytical approach developed by corresponding author Steve Horvath, UCLA associate professor of human genetics and biostatistics, the UCLA team used data from DNA microarrays vast collections of tiny DNA spots -- to map the activity of virtually every gene in the genome simultaneously. By comparing gene activity in different areas of the brain, the team identified gene networks that correlated to specific brain regions. Then they compared the strength of these correlations between humans and chimps.
Many of the human-specific gene networks identified by the scientists related to learning, brain cell activity and energy metabolism.
"If you view the brain as the body's engine, our findings suggest that the human brain fires like a 12-cylinder engine, while the chimp brain works more like a 6-cylinder engine," explained Geschwind. "It's possible that our genes adapted to allow our brains to increase in size, operate at different speeds, metabolize energy faster and enhance connections between brain cells across different brain regions."
Future UCLA studies will focus on linking the expression of evolutionary genes to specific regions of the brain, such as those that regulate language, speech and other uniquely human abilities.