c

Let c=2011, C=[1,2,3,...,c], if f does exist

1) f(n+c) = f(n) + c

2) f(a) = f(b) <===> a = b

3) for any n in C, f(n) <= 2c

4) let A and B the subsets of C, so that

   for all a in A, f(a) <= c)

   for all b in B, c<f(b)<=2c

5) B can not be empty.

6) for each b in B, there is an unique a in A, with f(a)=b 

That means A and B have the same number of elements, ...impossible since c is odd!

So, you can not construct any relation for C.

This is true for Cn=[nc+1,nc+2, ... nc+c], n=1,2,3 ......

所有跟帖: 

What is relation? your 1 to 6 is just my proof. my 2011/2 out of -jinjing- 給 jinjing 發送悄悄話 (255 bytes) () 06/01/2011 postreply 06:51:04

回複:What is relation? your 1 to 6 is just my proof. my 2011/2 out -15少- 給 15少 發送悄悄話 15少 的博客首頁 (133 bytes) () 06/01/2011 postreply 08:31:32

your (2) means f is bijection function. 1 to 1 and onto. -jinjing- 給 jinjing 發送悄悄話 (78 bytes) () 06/01/2011 postreply 09:03:44

回複:your (2) means f is bijection function. 1 to 1 and onto. -15少- 給 15少 發送悄悄話 15少 的博客首頁 (47 bytes) () 06/01/2011 postreply 09:19:59

If f is linear, OK. But we can't say nonlinear f is impossible b -jinjing- 給 jinjing 發送悄悄話 (45 bytes) () 06/01/2011 postreply 11:41:54

you said yourself "for any f, no solution" -15少- 給 15少 發送悄悄話 15少 的博客首頁 (41 bytes) () 06/01/2011 postreply 13:14:55

回複:you said yourself "for any f, no solution" -jinjing- 給 jinjing 發送悄悄話 (55 bytes) () 06/01/2011 postreply 14:28:17

is there anything wrong in my demonstration 1) to 6)? -15少- 給 15少 發送悄悄話 15少 的博客首頁 (0 bytes) () 06/01/2011 postreply 15:06:40

your answer is not math answer, I do this Q, I hope you can see. -jinjing- 給 jinjing 發送悄悄話 (191 bytes) () 06/02/2011 postreply 10:07:19

MY answer is MY math answer. -15少- 給 15少 發送悄悄話 15少 的博客首頁 (299 bytes) () 06/02/2011 postreply 12:41:02

I like the people who like Math. Let me tell you the detail. -jinjing- 給 jinjing 發送悄悄話 (177 bytes) () 06/02/2011 postreply 15:51:05

回複:I like math, not myth nor mystification -15少- 給 15少 發送悄悄話 15少 的博客首頁 (266 bytes) () 06/02/2011 postreply 17:24:06

You at first you don't think f(N1)=N2,so,I ,,,,your deduce prove -jinjing- 給 jinjing 發送悄悄話 (164 bytes) () 06/02/2011 postreply 18:23:04

Nice! -亂彈- 給 亂彈 發送悄悄話 亂彈 的博客首頁 (0 bytes) () 06/01/2011 postreply 18:40:26

thanks! -15少- 給 15少 發送悄悄話 15少 的博客首頁 (0 bytes) () 06/02/2011 postreply 12:46:16

回複:c Could you provide some details for -wxcfan123- 給 wxcfan123 發送悄悄話 (247 bytes) () 06/11/2011 postreply 18:57:48

figure out missing details. Nice problem and nice solution. -wxcfan123- 給 wxcfan123 發送悄悄話 (335 bytes) () 06/12/2011 postreply 14:36:53

請您先登陸,再發跟帖!