What is relation? your 1 to 6 is just my proof. my 2011/2 out of

回答: c15少2011-06-01 03:34:14

I wrote next year ,2012 ,even number,we can get f.

Your 1,2,you give too strong condition,f is bijection...

I think ,though you are smart,your major is not math.F(x)is unique and r(x) may or not unique.So,r(x)=x+1005,r(x)=x+1006....

所有跟帖: 

回複:What is relation? your 1 to 6 is just my proof. my 2011/2 out -15少- 給 15少 發送悄悄話 15少 的博客首頁 (133 bytes) () 06/01/2011 postreply 08:31:32

your (2) means f is bijection function. 1 to 1 and onto. -jinjing- 給 jinjing 發送悄悄話 (78 bytes) () 06/01/2011 postreply 09:03:44

回複:your (2) means f is bijection function. 1 to 1 and onto. -15少- 給 15少 發送悄悄話 15少 的博客首頁 (47 bytes) () 06/01/2011 postreply 09:19:59

If f is linear, OK. But we can't say nonlinear f is impossible b -jinjing- 給 jinjing 發送悄悄話 (45 bytes) () 06/01/2011 postreply 11:41:54

you said yourself "for any f, no solution" -15少- 給 15少 發送悄悄話 15少 的博客首頁 (41 bytes) () 06/01/2011 postreply 13:14:55

回複:you said yourself "for any f, no solution" -jinjing- 給 jinjing 發送悄悄話 (55 bytes) () 06/01/2011 postreply 14:28:17

is there anything wrong in my demonstration 1) to 6)? -15少- 給 15少 發送悄悄話 15少 的博客首頁 (0 bytes) () 06/01/2011 postreply 15:06:40

your answer is not math answer, I do this Q, I hope you can see. -jinjing- 給 jinjing 發送悄悄話 (191 bytes) () 06/02/2011 postreply 10:07:19

MY answer is MY math answer. -15少- 給 15少 發送悄悄話 15少 的博客首頁 (299 bytes) () 06/02/2011 postreply 12:41:02

I like the people who like Math. Let me tell you the detail. -jinjing- 給 jinjing 發送悄悄話 (177 bytes) () 06/02/2011 postreply 15:51:05

回複:I like math, not myth nor mystification -15少- 給 15少 發送悄悄話 15少 的博客首頁 (266 bytes) () 06/02/2011 postreply 17:24:06

You at first you don't think f(N1)=N2,so,I ,,,,your deduce prove -jinjing- 給 jinjing 發送悄悄話 (164 bytes) () 06/02/2011 postreply 18:23:04

請您先登陸,再發跟帖!