you said yourself "for any f, no solution"

can you find a nonlinear solution?

所有跟帖: 

回複:you said yourself "for any f, no solution" -jinjing- 給 jinjing 發送悄悄話 (55 bytes) () 06/01/2011 postreply 14:28:17

is there anything wrong in my demonstration 1) to 6)? -15少- 給 15少 發送悄悄話 15少 的博客首頁 (0 bytes) () 06/01/2011 postreply 15:06:40

your answer is not math answer, I do this Q, I hope you can see. -jinjing- 給 jinjing 發送悄悄話 (191 bytes) () 06/02/2011 postreply 10:07:19

MY answer is MY math answer. -15少- 給 15少 發送悄悄話 15少 的博客首頁 (299 bytes) () 06/02/2011 postreply 12:41:02

I like the people who like Math. Let me tell you the detail. -jinjing- 給 jinjing 發送悄悄話 (177 bytes) () 06/02/2011 postreply 15:51:05

回複:I like math, not myth nor mystification -15少- 給 15少 發送悄悄話 15少 的博客首頁 (266 bytes) () 06/02/2011 postreply 17:24:06

You at first you don't think f(N1)=N2,so,I ,,,,your deduce prove -jinjing- 給 jinjing 發送悄悄話 (164 bytes) () 06/02/2011 postreply 18:23:04

請您先登陸,再發跟帖!