個人資料
正文

Tofersen治療萎縮側索硬化症副作用

(2025-10-10 23:26:32) 下一個

反義寡核苷酸Tofersen治療SOD1基因突變型肌萎縮側索硬化症(ALS)的試驗

https://www.nejm.org/doi/full/10.1056/NEJMoa2204705

作者:Timothy M. Miller,醫學博士,理學博士,Merit獎
發表於2022年9月21日
N Engl J Med 2022;387:1099-1110
DOI: 10.1056/NEJMoa2204705
第387卷 第12期

摘要
背景
鞘內注射反義寡核苷酸Tofersen可降低超氧化物歧化酶1 (SOD1) 蛋白的合成,目前正在SOD1基因突變相關的肌萎縮側索硬化症 (ALS) 患者中進行研究。

方法
在這項3期試驗中,我們以2:1的比例隨機分配患有SOD1 ALS的成年人,在24周內分別接受8劑托弗森(100毫克)或安慰劑治療。主要終點是預測病情進展較快的參與者,其ALS功能評定量表修訂版(ALSFRS-R;範圍:0至48,分數越高表示功能越好)總分從基線到第28周的變化。次要終點包括腦脊液(CSF)中SOD1蛋白總濃度的變化、血漿中神經絲輕鏈濃度的變化、慢肺活量的變化以及16塊肌肉的手持式測力計的變化。對該試驗的隨機部分及其52周開放標簽擴展部分的綜合分析,比較了試驗開始時開始使用托弗森(早期開始隊列)的參與者與第28周從安慰劑轉為該藥物的參與者(延遲開始隊列)的結果。

研究摘要
反義寡核苷酸托弗森治療SOD1型肌萎縮側索硬化症(ALS)的試驗

結果
共72名參與者接受了托弗森治療(其中39名預計進展更快),36名接受了安慰劑治療(其中21名預計進展更快)。與安慰劑相比,托弗森使腦脊液中SOD1濃度和血漿中神經絲輕鏈濃度的降低幅度更大。在進展較快的亞組(主要分析)中,tofersen 組和安慰劑組患者至第 28 周的 ALSFRS-R 評分變化分別為 -6.98 和 -8.14(差異為 1.2 分;95% 置信區間 [CI],-3.2 至 5.5;P=0.97)。兩組患者的次要臨床終點結果無顯著差異。共有 95 名參與者(88%)進入開放標簽延伸研究。52 周時,早期開始隊列的 ALSFRS-R 評分變化為 -6.0,延遲開始隊列為 -9.5(差異為 3.5 分;95% CI,0.4 至 6.7);其他終點的非多重校正差異有利於早期開始 tofersen 組。腰椎穿刺相關不良事件常見。7% 的 tofersen 接受者發生神經係統嚴重不良事件。
結論
在SOD1型ALS患者中,托弗森(tofersen)在28周內降低了腦脊液中SOD1的濃度和血漿中神經絲輕鏈的濃度,但並未改善臨床終點,且與不良事件相關。托弗森(tofersen)早期給藥與延遲給藥的潛在效果正在擴展階段進一步評估。 (由 Biogen 資助;VALOR 和 OLE ClinicalTrials.gov 編號為 NCT02623699 和 NCT03070119;EudraCT 編號為 2015-004098-33 和 2016-003225-41。)

快速摘要
Tofersen 治療 SOD1 ALS
2 分 18 秒
約 2% 的肌萎縮側索硬化症 (ALS) 病例與編碼超氧化物歧化酶 1 (SOD1) 基因的突變有關。1,2 已描述了 200 多種 ALS 相關的 SOD1 突變,並且這些突變與不同的疾病進展速度相關。3-7 該疾病中的神經元變性被認為是由突變 SOD1 蛋白的毒性功能獲得引起的。1,8–12 Tofersen 是一種鞘內注射的反義寡核苷酸,旨在減少通過誘導核糖核酸酶 H 介導的 SOD1 信使 RNA 降解來抑製 SOD1 蛋白。10,13–15 我們開展了一項為期 28 周的 3 期隨機試驗,評估托弗森 (tofersen) 對 SOD1 ALS 成人患者的療效和安全性。本試驗為三部分試驗的 C 部分 (VALOR)。前兩部分為劑量遞增試驗,旨在評估 C 部分中托弗森的劑量(參見方案,方案與本文全文可在 NEJM.org 獲取)。15 已參加 A 部分和 B 部分的受試者未參加 C 部分。完成本試驗後,受試者有機會參加正在進行的開放標簽擴展研究。
方法
試驗監督
本試驗按照國際協調會 (ICHC) 的《藥物臨床試驗質量管理規範》(GCP) 指南和《赫爾辛基宣言》中概述的倫理原則進行。VALOR 及其開放標簽擴展研究的方案均已獲得相關倫理委員會的批準。獨立數據監測委員會審查了安全性數據。隨機階段和開放標簽擴展階段均已簽署書麵知情同意書。由參與者或其法定代表人提供。
申辦方Biogen和作者設計了這些試驗。Biogen提供了托法森和安慰劑,監督了試驗,進行了統計學分析,並支付了醫學寫作協助費用。Biogen和作者分析了數據。論文初稿由第一作者和Biogen雇用的一位作者撰寫。申辦方審閱了論文稿,但不能延遲或阻止結果的發表。作者審閱並批準了論文稿的修訂,並保證數據的準確性和完整性、試驗對方案的忠實度以及不良事件報告的準確性。作者與Biogen之間簽訂了保密協議。
試驗設計
本試驗的3期、雙盲、隨機、安慰劑對照VALOR部分於2019年3月至2021年7月進行。16 參與者在10個國家的32個研究中心入組(參見補充附錄S1部分,可在NEJM.org獲取)。該試驗包括4周的篩選期、24周的治療期和4至8周的隨訪期,隨後是持續的延長期。
參與者按2:1的比例隨機分配,通過腰椎穿刺接受鞘內推注15毫升托弗森溶液(100毫克)或等量的安慰劑(人工腦脊液[CSF]),給藥時間為24周,每2周注射3劑,之後每4周注射5劑(補充附錄圖S1)。隨機化分層依據基線時是否使用依達拉奉、利魯唑或兩者同時使用,以及參與者是否符合疾病進展更快的預後標準,這些預後標準基於 SOD1 突變類型和肌萎縮側索硬化症功能評定量表修訂版 (ALSFRS-R) 評分的估計斜率,從症狀出現到篩選時計算(“隨機化前 ALSFRS-R 斜率”)。由於 ALSFRS-R 評分可能出現非線性進展,突變內變異性可能混淆這些指標的預後價值,且文獻支持使用神經絲輕鏈作為疾病進展的預後標誌物,16-24 因此在獲得 VALOR 結果之前,預先設定了根據血漿中神經絲輕鏈基線濃度(高於或低於試驗人群的中位濃度)定義的亞組分析(參見補充附錄 S2 部分)。
完成 VALOR 後,參與者可以選擇參加最長 236 周的開放標簽擴展試驗,同時不了解他們在 VALOR 中的試驗組分配。VALOR 及其開放標簽擴展試驗第 52 周的合並分析是預先設定的,旨在比較整個意向治療人群中提前開始和延遲開始托弗森治療的情況。擴展階段仍在進行中,計劃在所有參與者完成至少3.5年的隨訪後進行分析,但目前尚未達到。
參與者
我們納入了因ALS導致肌萎縮並確診SOD1突變的成年人。主要分析人群是符合試驗定義的快速進展疾病預後標準(參見補充附錄S2部分)的參與者亞組,稱為“快速進展亞組”。此外,還進行了隨機分組,納入了不符合這些擴展標準、預計疾病進展較慢的參與者亞組,即慢速進展亞組。這些參與者未被納入主要終點分析,但有機會參加開放標簽擴展研究,接受托弗森治療。在評估 VALOR 及其開放標簽擴展試驗的綜合數據時,無論在試驗的隨機部分預測其疾病進展速度是快還是慢,在 VALOR 中開始使用 tofersen 的參與者都被稱為“早期啟動隊列”。在 VALOR 中接受安慰劑治療,並在約 28 周後的開放標簽擴展試驗中有機會換用 tofersen 的參與者被稱為“延遲啟動隊列”。
終點
VALOR 的主要療效終點是快速進展亞組患者從基線到第 28 周的 ALSFRS-R 總分變化。ALSFRS-R 包含 12 個項目,涵蓋四個功能子領域(延髓運動、精細運動、粗大運動和呼吸),總分範圍為 0 至 48 分,分數越高表示功能越好。預先指定的次要終點包括腦脊液中 SOD1 蛋白總濃度與基線的變化、血漿中神經絲輕鏈濃度的變化、預測慢肺活量百分比(體積標準化為預測正常值的百分比)ue(根據年齡、性別和身高確定)、手持式測力計 megascore(手臂和腿部 16 個肌肉群的 z 分數平均值,值越高表示力量越大)、死亡或永久通氣時間(連續 ≥21 天,每天機械通氣≥22 小時)、死亡時間和安全性。預先指定的探索性終點包括參與者報告的結果測量,例如五項肌萎縮側索硬化症評估問卷、疲勞(疲勞嚴重程度量表)和生活質量(EuroQol 五維問卷)。在 VALOR 和開放標簽擴展的合並分析中也評估了相同的終點。
統計分析
我們計算得出,在快速進展的主要分析亞組中,樣本量為60名參與者(隨機化比例為2:1),根據聯合秩和檢驗(如下所述),將提供84%的檢驗功效來檢測組間差異。假設托弗森組ALSFRS-R評分從基線到第28周的變化為-4.8,安慰劑組為-24.7,標準差為20.39;雙側α水平為0.05,托弗森組生存率為90%,安慰劑組生存率為82%。在快速進展亞組中,對試驗28周隨機部分的所有主要和次要終點進行了正式檢驗。在慢速進展亞組中,隻有腦脊液中總SOD1濃度具有統計學顯著性檢驗功效,並且是該人群的主要終點(表S3)。在分析 ALSFRS-R 評分變化時,采用聯合秩和檢驗進行統計推斷。該檢驗方法同時考慮了功能衰退和生存率,並允許對治療效果進行統計檢驗,同時考慮了因死亡導致的數據截斷。聯合秩和評分的計算方法是將每位參與者的 ALSFRS-R 評分從基線到第 28 周的變化與試驗中其他每位參與者的變化進行比較,如果結果優於被比較的參與者,則得分為 1,如果結果更差,則得分為 -1,如果結果相同,則得分為 0。根據死亡時間,將死亡的參與者排名最低,首次服藥後死亡時間最短的參與者排名依次降低。使用協方差分析 (ANCOVA) 評估每位參與者的個人分數總和(即排序分數)。
ALSFRS-R 排序評分的 ANCOVA 模型將試驗組作為固定效應,並根據協變量(自症狀出現以來的基線疾病持續時間、基線 ALSFRS-R 總分以及利魯唑或依達拉奉的使用情況)進行了校正。估計的組間差異是通過 ALSFRS-R 評分相對於基線變化的 ANCOVA 模型獲得的。VALOR 未指定對所有隨機分配的參與者(無論預測進展更快或更慢)的總體人群進行正式的統計檢驗,但 ANCOVA 提供了相對於基線變化的估計值。聯合秩分析與多重填補相結合,以解釋由於未計入死亡的退出而導致的缺失數據。多重填補模型包括試驗組、利魯唑或依達拉奉的使用情況以及基線 ALSFRS-R 評分。其他亞組和探索性終點及分析在補充附錄 S3 和 S4 部分中描述。
如果兩個試驗組的主要終點結果存在顯著差異,則采用序貫封閉式檢驗程序按以下順序對進展較快亞組的次要終點進行檢驗:腦脊液中SOD1蛋白總濃度從基線(與基線的比值)至第28周的變化、血漿中神經絲輕鏈濃度從基線(與基線的比值)至第28周的變化、慢肺活量占預計值百分比從基線至第28周的變化、手持式測力計Meascore從基線至第28周的變化、無呼吸機輔助生存期和總生存期。所有連續終點均采用ANCOVA分析相對於基線的變化,並結合多重填補法處理因退出而產生的缺失數據。慢肺活量的主要統計學推斷采用聯合秩分析和多重填補法。對於生存分析,對於不符合終點定義的參與者,在試驗結束時或退出之日將數據刪失。僅納入經獨立終點裁定委員會裁定的事件。治療效果評估采用0.05的雙側顯著性水平。
對VALOR及其開放標簽擴展試驗的數據進行合並分析,以評估托弗森早期啟動與延遲啟動的療效,首次數據截止時間為2021年7月。開放標簽擴展試驗的第二次數據截止時間為2021年7月。

張力試驗於 2022 年 1 月 16 日進行,當時在 VALOR 中接受隨機分組的最後一名參與者有機會從 VALOR 開始進行至少 52 周的隨訪。這些數據的綜合分析在此處呈現。在分析 2022 年 1 月數據截止日期的數據時,VALOR 的最終結果以及 VALOR 及其開放標簽擴展的原始分析已在科學大會上發表;然而,參與者、研究人員和現場工作人員以及試驗團隊在擴展階段仍然不知道 VALOR 中最初的試驗組分配。
根據富集標準(快速進展和緩慢進展亞組)和基線血漿神經絲輕鏈中位濃度定義的分類亞組,對 VALOR 數據和開放標簽擴展第一個數據截止日期的數據進行了預先指定的分析。認識到將連續變量作為協變量進行調整比將人群二分為分類亞組更能精確地控製個體異質性,我們在分析2022年1月數據截止日期之前修改了統計分析計劃,將血漿中神經絲輕鏈的基線濃度作為分析之間的協變量(補充附錄S2和S4部分)。
對2022年1月數據截止日期的數據進行合並分析是基於意向治療原則,即所有在VALOR中接受隨機分組的參與者(108名參與者)均根據其原始試驗組分配納入,無論其病情進展快慢、是否依從試驗藥物、是否提前終止試驗或是否交叉到托弗森組。ANCOVA分析與多重填補相結合的方法與VALOR中的分析相同。 Kaplan-Meier生存分析納入了截至2022年1月16日的所有數據,包括死亡時間或持續通氣時間以及死亡時間;這些終點的組間比較基於對數秩檢驗,該檢驗根據試驗組和基線血漿神經絲輕鏈中位濃度進行分層(補充附錄S4部分和表S5)。由於合並分析中未計劃調整多重比較的置信區間寬度,因此無法從這些結果中得出結論。
結果
參與者
VALOR試驗共納入108名攜帶42個獨特SOD1突變(表S1)的參與者;72名參與者被分配接受托弗森治療,36名參與者被分配接受安慰劑治療。108名參與者中,共有60名構成了快速進展亞組,主要分析在該亞組中進行。共有 95 名 VALOR 參與者(88%)參與了開放標簽擴展研究(圖 S3)。合並分析的缺失數據量如下所示。兩組參與者的基線臨床特征相似,包括使用利魯唑、依達拉奉或兩者合用、疾病症狀出現時間、基線 ALSFRS-R 評分以及預計慢肺活量百分比。然而,接受托弗森治療的參與者的神經絲輕鏈基線濃度比接受安慰劑治療的參與者高 15% 至 25%,並且接受托弗森治療的參與者從篩選至第 15 天(約 42 天)的 ALSFRS-R 評分下降速度更快(表 1)。兩組基線平均 ALSFRS-R 評分約為 37 分。
表 1

參與者基線人口統計學和臨床??特征(意向治療人群)。
終點
VALOR 的主要終點
在快速進展主要分析亞組的 60 名參與者中,從基線到第 28 周,托弗森組 ALSFRS-R 總分的變化為 -6.98 分,安慰劑組為 -8.14 分(差異為 1.2 分;95% 置信區間 [CI],-3.2 至 5.5;P=0.97)(表 2)。
表 2

快速進展亞組中 VALOR 的主要和次要終點。
VALOR 的次要終點
由於主要終點未達到統計學顯著性,因此快速進展亞組中托弗森和安慰劑之間所有後續差異均視為無顯著差異,因此未提供 P 值。在進展較快的亞組中,接受托弗森治療的參與者腦脊液中SOD1蛋白的總濃度降低了29%(與基線的幾何平均比值,0.71;95% CI,0.62~0.83),而接受安慰劑治療的參與者腦脊液中SOD1蛋白的總濃度則增加了16%(與基線的幾何平均比值,1.16;95% CI,0.96~1.40)(組間幾何平均比值差異,0.62;95% CI,0.49~0.78)(表2)。在接受托弗森治療的進展較慢的亞組中,腦脊液中SOD1蛋白的總濃度降低了40%,而安慰劑組的參與者腦脊液中SOD1蛋白的總濃度降低了19%。

接受安慰劑的慢進展亞組的ts降低(組間幾何平均比值差異為0.74;95% CI,0.63~0.88)(表S4)。接受tofersen治療的快進展亞組的血漿神經絲輕鏈平均濃度降低了60%,而接受安慰劑治療的則增加了20%(組間幾何平均比值差異為0.33;95% CI,0.25~0.45)(表2)。
在快進展亞組中,從基線到第28周,接受tofersen治療的參與者的預測慢肺活量百分比下降了14.3個百分點,而接受安慰劑治療的參與者的預測慢肺活量百分比下降了22.2個百分點(差異為7.9個百分點;95% CI,-3.5~19.3)(表2)。從基線到第 28 周,tofersen 組手持式測力計評分變化為 -0.34,安慰劑組為 -0.37(差異為 0.02;95% CI,-0.21 至 0.26)。由於事件數量少,無法估計死亡或永久通氣的中位時間;tofersen 組(10%)和安慰劑組(10%)中死亡或需要永久通氣的參與者百分比沒有差異(風險比,1.39;95% CI,0.22 至 8.80)。無法估計死亡的中位時間,tofersen 組發生一例事件(3% 的參與者),安慰劑組無事件(表 2)。VALOR 期間進展較慢亞組的描述性分析見表 S4。
VALOR 聯合開放標簽擴展試驗
VALOR 試驗結束後,95 名參與者(88%)被納入非隨機開放標簽擴展試驗,其中 63 名(88%)最初被分配接受托弗森治療,32 名(89%)最初被分配接受安慰劑治療。截至最近一次數據截止時間(2022 年 1 月 16 日),早期啟動隊列中仍有 49 名參與者(68%),延遲啟動隊列中仍有 18 名參與者(50%)留在開放標簽擴展試驗中。所有 108 名在 VALOR 中接受隨機分組的參與者均被納入 VALOR 和開放標簽擴展試驗合並數據集的分析中,無論他們之前被納入快速進展亞組還是慢速進展亞組。在早期啟動的參與者中,腦脊液中總 SOD1 濃度和血漿中神經絲輕鏈濃度的降低在數值上隨時間推移而持續;延遲啟動隊列參與者在開放標簽擴展期也有類似的降低(圖1)。52周時,早期啟動隊列參與者的ALSFRS-R評分相對於VALOR基線的變化為-6.0分,延遲啟動隊列參與者為-9.5分(差異為3.5分;95% CI,0.4-6.7)。早期啟動隊列中15名參與者(21%)和延遲啟動隊列中8名參與者(22%)的缺失數據需要填補(圖2)。
圖1

腦脊液(CSF)中總超氧化物歧化酶1(SOD1)濃度和血漿中神經絲輕鏈(NfL)濃度。
圖2

臨床功能和生存分析。
早期開始參與者的慢肺活量預測百分比相對於VALOR基線的變化為-9.4%,而延遲開始參與者的慢肺活量預測百分比相對於VALOR基線的變化為-18.6%(差異為9.2個百分點;95% CI,1.7-16.6)。早期開始參與者的手持式測力計評分相對於VALOR基線的變化為-0.17,而延遲開始參與者的手持式測力計評分相對於VALOR基線的變化為-0.45(差異為0.28;95% CI,0.05-0.52)。圖2和表S5顯示了VALOR和開放標簽擴展的聯合分析中ALSFRS-R評分、慢肺活量預測百分比和手持式測力計評分的結果。
由於事件數量有限,無法估計死亡或永久通氣的中位時間以及死亡的中位時間。與延遲開始治療的參與者相比,提前開始治療的參與者死亡或持續使用呼吸機的時間風險比為0.36(95% CI,0.14 至 0.94),死亡時間風險比為0.27(95% CI,0.08 至 0.89)(表S5)。描述性分析顯示,接受tofersen治療的16例p.Ala5Val突變特別關注參與者的病程中位數為1.73年(範圍,0.88 至 3.68年),其中3例參與者在數據截止時仍在試驗中(3例仍在進行中參與者的範圍為1.89 至 3.68年)(圖S4)。
安全性和不良事件
VALOR試驗和開放標簽擴展試驗中發生的大多數不良事件嚴重程度為輕度至中度,未導致停藥或終止試驗藥物。大多數不良事件與ALS疾病進展、普通人群的疾病或腰椎穿刺的已知副作用一致(表3)。最常見的不良事件包括操作疼痛、頭痛、手臂或腿部疼痛、跌倒和背痛。在VALOR研究中,接受tofersen治療的參與者和接受安慰劑治療的參與者的操作疼痛和頭痛發生率相似,而

托弗森組手臂或腿部疼痛和背部疼痛更常見(發生率高出≥5個百分點),安慰劑組跌倒更常見。
表3

不良事件總結。
VALOR研究中接受托弗森治療的4名參與者(6%)和開放標簽擴展研究中的3名參與者(占所有接受托弗森治療的參與者的7%)共發生8起神經係統嚴重不良事件,包括脊髓炎、化學性或無菌性腦膜炎、腰椎神經根病、顱內壓升高和視乳頭水腫。脊髓炎患者在第五次服用托弗森後約1周入院,接受了糖皮質激素和血漿置換治療,未接受進一步的試驗治療。在最後一次服用托弗森後3個月內,該患者的神經係統體征、症狀和影像學檢查結果均得到緩解。
在VALOR試驗中,托弗森組42名參與者(58%)和安慰劑組2名參與者(6%)至少有一次腦脊液白細胞計數超過10個/立方毫米,約40%的參與者基線時腦脊液蛋白濃度升高。托弗森組的中位腦脊液蛋白濃度增加了110毫克/升,而安慰劑組則降低了15毫克/升。在開放標簽擴展試驗中,也觀察到了相似的腦脊液細胞增多和蛋白濃度升高發生率。
討論
在試驗的28周隨機VALOR部分中,托弗森與腦脊液中SOD1蛋白總濃度(靶向作用的間接標誌物)和血漿中神經絲輕鏈濃度(軸突損傷和神經退行性變的標誌物)的降低相關。盡管有這些結果,在預測進展較快的亞組中,28 周時托弗森和安慰劑之間 ALSFRS-R 評分相對於基線的變化沒有顯著差異,並且該亞組中的其他臨床終點也沒有明顯差異。在 52 周時對 VALOR 及其開放標簽擴展進行的預設合並分析中,與 28 周後在開放標簽擴展中開始使用托弗森的參與者相比,在 VALOR 開始時開始使用托弗森的參與者,無論進展快慢,ALSFRS-R 評分、預測慢肺活量百分比和手持式測力計評分的數值下降幅度較小。解釋合並分析結果的局限性包括在分析早期開始和延遲開始隊列之間的差異時未調整多重比較的置信區間寬度,大約 20% 的缺失終點數據需要填補,以及試驗的 VALOR 部分的結果在分析時是已知的。
約7%接受tofersen治療的受試者出現了神經係統嚴重不良事件,包括脊髓炎、化學性或無菌性腦膜炎、腰椎神經根病、顱內壓增高和視乳頭水腫。脊髓炎的潛在機製及其與腦脊液細胞增多和蛋白升高的關係尚不清楚。
在試驗設計之初,SOD1突變類型和隨機化前ALSFRS-R斜率被認為是解決SOD1 ALS疾病進展異質性的合適工具,但在短期試驗期間,兩者均不能始終如一地預測預後。盡管當時神經絲輕鏈的預後價值已被明確,但由於檢測方法的局限性,我們無法根據個體受試者的神經絲輕鏈基線濃度進行隨機分組,而這本可以更好地平衡各試驗組。因此,我們的試驗預先設定了亞組分析,並根據神經絲輕鏈的中位基線濃度進行定義。這種方法有助於解決基線特征的不平衡問題(從篩選到第 15 天,血漿中神經絲輕鏈的濃度和 ALSFRS-R 下降),但使用了任意亞組,而不是控製每個參與者的神經絲輕鏈基線濃度(參見補充附錄 S2 部分)。為了解決個體疾病的異質性,將血漿中神經絲輕鏈的基線濃度作為分析的協變量。在獲得 VALOR 結果以及 VALOR 和開放標簽擴展的初步結果之後,但在進行最新的合並分析之前,對分析計劃的這一改變是指定的。隨著神經絲輕鏈檢測變得越來越容易,在未來的 ALS 臨床試驗中可能會考慮將血漿中神經絲輕鏈濃度作為連續變量進行隨機化。
VALOR 的持續時間和大小是根據 12 名 SOD1 突變攜帶者的現有但有限的數據確定的,這些患者患有快速進展的疾病

在 Tofersen 1-2 期多劑量遞增研究 15 和阿利莫洛莫(一種促進新生蛋白質折疊的熱休克蛋白輔助誘導劑)25 的 2 期試驗中,接受安慰劑治療的患者出現功能障礙。這些患者的功能在這些研究期間迅速下降。相比之下,在 VALOR 研究中,在強化快速進展亞組中接受安慰劑治療的參與者的功能下降速度比數據預測的速度慢三倍。
在對VALOR和開放標簽擴展試驗的綜合分析中,早期啟動隊列和延遲啟動隊列之間臨床終點可能存在差異,且存在上述局限性,這表明可能需要超過28周的試驗時間才能確定托弗森對此類疾病患者的療效。26,27 正在進行的ATLAS試驗(ClinicalTrials.gov注冊號:NCT04856982)正在研究早期或症狀前幹預。28
在這項試驗的28周VALOR部分中,SOD1型肌萎縮側索硬化症(ALS)患者鞘內注射反義寡核苷酸托弗森,結果顯示,與安慰劑相比,ALS進展綜合指標的下降幅度沒有顯著差異。托弗森在少數參與者中發生了包括脊髓炎在內的不良事件。在正在進行的擴展階段,正在進一步評估早期啟動托弗森與延遲啟動托弗森的潛在影響。
注釋
作者提供的數據共享聲明與本文全文可在 NEJM.org 上獲取。
由 Biogen 讚助。
作者提供的披露表格與本文全文可在 NEJM.org 上獲取。
我們感謝 VALOR 和開放標簽擴展試驗的參與者及其家人和護理人員,沒有他們,本試驗不可能完成;感??謝全球患者權益組織的成員;感謝研究中心工作人員(參見補充附錄);感謝 Christine Nelson 藥學博士(Biogen)和 Yien Liu 博士(Excel Scientific Solutions)對早期稿件提供的醫學寫作幫助;感謝 Cara Dickinson 文學士(Excel Scientific Solutions)根據期刊要求對早期稿件進行文字編輯和樣式調整的幫助。
補充材料
方案 (nejmoa2204705_protocol.pdf)
下載
18.99 MB
補充附錄 (nejmoa2204705_appendix.pdf)
下載
738.79 KB
披露表 (nejmoa2204705_disclosures.pdf)
下載
1.05 MB
數據共享聲明 (nejmoa2204705_data-sharing.pdf)
下載
91.28 KB
參考文獻
1.
Bunton-Stasyshyn RK, Saccon RA, Fratta P, Fisher EM. SOD1功能及其對肌萎縮側索硬化症病理學的影響:新興和複興的主題。《神經科學家》2015;21:519-529。

Crossref
PubMed
Web of Science
Google Scholar
2.
Müller K, Brenner D, Weydt P 等。301 個德國 ALS 家係突變譜綜合分析。J Neurol Neurosurg Psychiatry 2018;89:817-827。
前往引用
Crossref
PubMed
Web of Science
Google Scholar
3.
Huai J, Zhang Z. 家族性 ALS 相關 SOD1 突變體的結構特性及其相互作用夥伴。Front Neurol 2019;10:527-527。
前往引用
Crossref
PubMed
Web of Science
Google Scholar
4.
Bali T, Self W, Liu J 等。定義 SOD1 ALS 自然史以指導治療性臨床試驗設計。J Neurol Neurosurg Psychiatry 2017;88:99-105。
前往引文
Crossref
PubMed
Web of Science
Google Scholar
5.
肌萎縮側索硬化症在線數據庫。SOD1 基因概要 (https://alsod.ac.uk/output/gene.php/SOD1)。
前往引文
Google Scholar
顯示所有參考文獻

職業中心
醫生職位
2025年10月11日
馬薩諸塞州
胃腸病學
高級或全科胃腸病學家
紐約州恩迪科特
家庭醫學
家庭醫學(紐約州恩迪科特)
加利福尼亞州伯林蓋姆
內科
PAFMG - 內科醫生(加利福尼亞州伯林蓋姆)
田納西州
血液學/腫瘤學
血液腫瘤學 | 田納西州東部 |培訓津貼
哥倫布,佐治亞州
腎病學
佐治亞州哥倫布市私人診所腎病學職位!歡迎簽證申請。
黎巴嫩,新罕布什爾州
血液科/腫瘤科
女性腫瘤科服務

Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS

https://www.nejm.org/doi/full/10.1056/NEJMoa2204705

Authors: Timothy M. Miller, M.D., Ph.D., Merit

E. Cudkowicz, M.D., Angela Genge, M.D., Pamela J. Shaw, M.B., B.S., M.D., Gen Sobue, M.D., Ph.D., Robert C. Bucelli, M.D., Ph.D., Adriano Chiò, M.D., +19 , for the VALOR and OLE Working Group*Author Info & Affiliations
Published September 21, 2022
N Engl J Med 2022;387:1099-1110
DOI: 10.1056/NEJMoa2204705
 

Abstract

BACKGROUND

The intrathecally administered antisense oligonucleotide tofersen reduces synthesis of the superoxide dismutase 1 (SOD1) protein and is being studied in patients with amyotrophic lateral sclerosis (ALS) associated with mutations in SOD1 (SOD1 ALS).

METHODS

In this phase 3 trial, we randomly assigned adults with SOD1 ALS in a 2:1 ratio to receive eight doses of tofersen (100 mg) or placebo over a period of 24 weeks. The primary end point was the change from baseline to week 28 in the total score on the ALS Functional Rating Scale–Revised (ALSFRS-R; range, 0 to 48, with higher scores indicating better function) among participants predicted to have faster-progressing disease. Secondary end points included changes in the total concentration of SOD1 protein in cerebrospinal fluid (CSF), in the concentration of neurofilament light chains in plasma, in slow vital capacity, and in handheld dynamometry in 16 muscles. A combined analysis of the randomized component of the trial and its open-label extension at 52 weeks compared the results in participants who started tofersen at trial entry (early-start cohort) with those in participants who switched from placebo to the drug at week 28 (delayed-start cohort).

RESULTS

A total of 72 participants received tofersen (39 predicted to have faster progression), and 36 received placebo (21 predicted to have faster progression). Tofersen led to greater reductions in concentrations of SOD1 in CSF and of neurofilament light chains in plasma than placebo. In the faster-progression subgroup (primary analysis), the change to week 28 in the ALSFRS-R score was −6.98 with tofersen and −8.14 with placebo (difference, 1.2 points; 95% confidence interval [CI], −3.2 to 5.5; P=0.97). Results for secondary clinical end points did not differ significantly between the two groups. A total of 95 participants (88%) entered the open-label extension. At 52 weeks, the change in the ALSFRS-R score was −6.0 in the early-start cohort and −9.5 in the delayed-start cohort (difference, 3.5 points; 95% CI, 0.4 to 6.7); non–multiplicity-adjusted differences favoring early-start tofersen were seen for other end points. Lumbar puncture–related adverse events were common. Neurologic serious adverse events occurred in 7% of tofersen recipients.

CONCLUSIONS

In persons with SOD1 ALS, tofersen reduced concentrations of SOD1 in CSF and of neurofilament light chains in plasma over 28 weeks but did not improve clinical end points and was associated with adverse events. The potential effects of earlier as compared with delayed initiation of tofersen are being further evaluated in the extension phase. (Funded by Biogen; VALOR and OLE ClinicalTrials.gov numbers, NCT02623699 and NCT03070119; EudraCT numbers, 2015-004098-33 and 2016-003225-41.)
Approximately 2% of cases of amyotrophic lateral sclerosis (ALS) are associated with mutations in the gene encoding superoxide dismutase 1 (SOD1).1,2 More than 200 ALS-associated SOD1 mutations have been described and are associated with variable rates of progression.3-7 Neuronal degeneration in this disorder is considered to be caused by toxic gain of function of the mutant SOD1 protein.1,8–12 Tofersen is an intrathecally administered antisense oligonucleotide designed to reduce the synthesis of SOD1 protein by inducing RNase H–mediated degradation of SOD1 messenger RNA.10,13–15 We conducted a 28-week, phase 3, randomized trial of the efficacy and safety of tofersen in adults with SOD1 ALS. This is part C (VALOR) of a three-part trial, the first two parts of which were dose-escalation trials conducted to assess the dose of tofersen to be used in part C (see the protocol, available with the full text of this article at NEJM.org).15 Participants who were enrolled in parts A and B were not enrolled in part C. After completion of this trial, participants had the opportunity to enroll in an ongoing open-label extension.

Methods

TRIAL OVERSIGHT

The trials were conducted in accordance with the Good Clinical Practice guidelines of the International Council for Harmonisation and the ethical principles outlined in the Declaration of Helsinki. The protocols of VALOR and its open-label extension were approved by relevant ethics committees. An independent data monitoring committee reviewed safety data. Written informed consent for both the randomized phase and open-label extension was provided by participants or their legal representatives.
The sponsor, Biogen, and the authors designed these trials. Biogen provided tofersen and placebo, oversaw the trial, performed the statistical analyses, and paid for medical writing assistance. Biogen and the authors analyzed the data. The first draft of the manuscript was written by the first author and an author employed by Biogen. The sponsor reviewed the manuscript but could not delay or prevent publication of the results. The authors reviewed and approved revisions of the manuscript and vouch for the accuracy and completeness of the data, the fidelity of the trials to the protocols, and the accuracy of the reporting of adverse events. There were confidentiality agreements between the authors and Biogen.

TRIAL DESIGN

The phase 3, double-blind, randomized, placebo-controlled VALOR component of the trial was conducted from March 2019 through July 2021.16 Participants were enrolled at 32 sites in 10 countries (see Section S1 in the Supplementary Appendix, available at NEJM.org). The trial included a 4-week screening period, a 24-week treatment period, and a follow-up period of 4 to 8 weeks followed by an ongoing extension phase.
Participants were randomly assigned in a 2:1 ratio to receive an intrathecal bolus injection through a lumbar puncture of a 15-ml solution of tofersen (100 mg) or an equivalent volume of placebo (artificial cerebrospinal fluid [CSF]) administered over a period of 24 weeks, as three doses once every 2 weeks, followed by five doses once every 4 weeks (Fig. S1 in the Supplementary Appendix). Randomization was stratified according to the use or nonuse of edaravone, riluzole, or both at baseline and according to whether participants met prognostic criteria for faster disease progression that were based on SOD1 mutation type and the estimated slope of the score on the Amyotrophic Lateral Sclerosis Functional Rating Scale–Revised (ALSFRS-R), calculated from the time of symptom onset until screening (“prerandomization ALSFRS-R slope”). Owing to the potential for nonlinear progression on the ALSFRS-R score and for intra-mutation variability confounding the prognostic value of these measures, as well as literature supporting the use of neurofilament light chains as a prognostic marker of disease progression,16-24 analyses in subgroups that were defined according to baseline concentrations of neurofilament light chains in plasma (above vs. below the median concentration for the trial population) were prespecified before VALOR results were available (see Section S2 in the Supplementary Appendix).
After completion of VALOR, participants were given the option to participate in an open-label extension for up to 236 weeks, while remaining unaware of their trial-group assignment in VALOR. The combined analysis at week 52 of VALOR and its open-label extension was prespecified and was intended to enable comparison of early-start and delayed-start tofersen in the full intention-to-treat population. The extension phase is ongoing, and analysis is planned when all participants have completed at least 3.5 years of follow-up, which has not been reached.

PARTICIPANTS

We enrolled adults with weakness attributable to ALS and a confirmed SOD1 mutation. The primary analysis population was the subgroup of participants who met the trial-defined prognostic criteria for faster-progressing disease (see Section S2 in the Supplementary Appendix) and is called the “faster-progression subgroup.” Also undergoing randomization was a subgroup of participants who did not meet these enrichment criteria and were predicted to have slower progression of disease, the slower-progression subgroup. These persons were not included in the primary end-point analysis but had the opportunity to enroll in the open-label extension to receive tofersen. In the evaluation of combined data from VALOR and its open-label extension, participants who initiated tofersen in VALOR are referred to as the “early-start cohort,” regardless of whether they were predicted to have faster-progressing or slower-progressing disease in the randomized part of the trial. Those who received placebo in VALOR and had the opportunity to cross over to tofersen in the open-label extension approximately 28 weeks later are referred to as the “delayed-start cohort.”

END POINTS

The primary efficacy end point in VALOR was the change from baseline to week 28 in the ALSFRS-R total score in the faster-progression subgroup. The ALSFRS-R consists of 12 items across four subdomains of function (bulbar, fine motor, gross motor, and breathing), with total scores ranging from 0 to 48 and higher scores indicating better function. Prespecified secondary end points included the change from baseline in the total concentration of SOD1 protein in CSF, the concentration of neurofilament light chains in plasma, the percentage of the predicted slow vital capacity (volumes were standardized to the percentage of the predicted normal value on the basis of age, sex, and height), the handheld dynamometry megascore (average of z-scores across 16 muscle groups in the arms and legs, with higher values indicating greater strength), the time to death or permanent ventilation (≥22 hours of mechanical ventilation per day for ≥21 consecutive days), the time to death, and safety. Prespecified exploratory end points included participant-reported outcome measures such as the five-item Amyotrophic Lateral Sclerosis Assessment Questionnaire, fatigue (Fatigue Severity Scale), and quality of life (EuroQol Group 5-Dimension questionnaire). The same end points were assessed as part of the combined analyses of VALOR and the open-label extension.

STATISTICAL ANALYSIS

We calculated that a sample size of 60 participants (2:1 randomization ratio) in the faster-progression primary analysis subgroup would provide 84% power to detect a between-group difference on the basis of the joint rank test (described below), assuming a change in the ALSFRS-R score from baseline to week 28 of −4.8 in the tofersen group and −24.7 in the placebo group, with a standard deviation of 20.39 and survival of 90% in the tofersen group and 82% in the placebo group, at a two-sided alpha level of 0.05. All primary and secondary end points for the 28-week randomized part of the trial were formally tested in the faster-progression subgroup. In the slower-progression subgroup, only the total SOD1 concentration in CSF was powered to test for statistical significance and was the primary end point in this population (Table S3). The joint rank test was used for statistical inference in the analysis of the change in the ALSFRS-R score. This accounts for both functional decline and survival and allows for a statistical test of the treatment effect while accounting for truncation of data owing to deaths. The joint rank score was calculated by comparing the change in each participant’s ALSFRS-R score from baseline to week 28 with that of every other participant in the trial, resulting in a score of 1 if the outcome was better than that of the participant being compared, –1 if worse, and 0 if the same. Participants who died were ranked lowest on the basis of their time to death, with progressively lower ranks given to those who died in the shortest period of time after the first dose. The sum of individual scores for each participant (i.e., ranked score) was assessed with the use of analysis of covariance (ANCOVA).
The ANCOVA model for ranked scores on the ALSFRS-R included trial group as a fixed effect and was adjusted for covariates (baseline disease duration since symptom onset, baseline ALSFRS-R total score, and use of riluzole or edaravone). The estimated between-group difference was obtained from the ANCOVA model for change from baseline in the ALSFRS-R score. Formal statistical testing for the overall population of all randomly assigned participants (irrespective of faster or slower predicted progression) was not specified for VALOR, but estimates are provided from the ANCOVA for change from baseline. Joint rank analysis was performed in conjunction with multiple imputation to account for missing data due to withdrawals not accounted for by death. The multiple-imputation model included trial group, use of riluzole or edaravone, and the baseline ALSFRS-R score. Additional subgroup and exploratory end points and analyses are described in Sections S3 and S4 in the Supplementary Appendix.
If the results for the primary end point differed significantly between the two trial groups, secondary end points for the faster-progression subgroup were tested with the use of a sequential closed testing procedure in order of ranking: the change from baseline (ratio to baseline) to week 28 in the total concentration of SOD1 protein in CSF, the change from baseline (ratio to baseline) to week 28 in the concentration of neurofilament light chains in plasma, the change from baseline to week 28 in the percentage of the predicted slow vital capacity, the change from baseline to week 28 in handheld dynamometry megascore, ventilation assistance–free survival, and overall survival. ANCOVA for change from baseline was used for all continuous end points and in conjunction with multiple imputation for handling missing data for withdrawals. Primary statistical inference for slow vital capacity was by joint rank analysis with the use of multiple imputation. For survival analyses, data for participants who did not meet the end-point definition were censored at the end of the trial or on the date of withdrawal. Only events that were adjudicated by the independent end-point adjudication committee were included. Treatment effects were assessed at a two-sided significance level of 0.05.
The first data cutoff for the combined analysis of data from VALOR and its open-label extension to evaluate the effects of early as compared with delayed initiation of tofersen was performed in July 2021. A second data cutoff of the open-label extension was performed on January 16, 2022, when the last participant who underwent randomization in VALOR had the opportunity for at least 52 weeks of follow-up from the start of VALOR. The combined analyses of these data are presented here. At the time that data from the January 2022 data cutoff were analyzed, the final results from VALOR and the original analysis of VALOR and its open-label extension had been presented at a scientific congress; however, participants, investigators and site staff, and the trial team remained unaware during the extension phase of the original trial-group assignments in VALOR.
Prespecified analyses of the data from VALOR and the data as of the first data cutoff of the open-label extension were performed on the basis of enrichment criteria (fast-progression and slow-progression subgroups) and of categorical subgroups defined by the median concentration of neurofilament light chains in plasma at baseline. Recognizing that adjusting for a continuous variable as a covariate more precisely controls for individual heterogeneity than dichotomizing the population into categorical subgroups, we amended the statistical analysis plan before analysis of the January 2022 data cutoff to incorporate the baseline concentration of neurofilament light chains in plasma as a covariate across analyses (Sections S2 and S4 in the Supplementary Appendix).
The combined analyses of the data as the January 2022 data cutoff are based on the intention-to-treat principle, whereby all participants who underwent randomization in VALOR (108 participants) are included according to their original trial-group assignment, regardless of fast or slow progression, adherence to the trial agent, early termination of the trial, or crossover to the tofersen group. The ANCOVA analyses in conjunction with multiple imputation were conducted identically to the analyses in VALOR. Kaplan–Meier survival analyses included all data up to January 16, 2022, for time to death or permanent ventilation and time to death; between-group comparisons for these end points were based on a log-rank test stratified according to trial group and the median concentration of neurofilament light chains in plasma at baseline (Section S4 and Table S5 in the Supplementary Appendix). Because there was no plan for adjustment of the widths of confidence intervals for multiple comparisons in the combined analysis, no conclusions can be drawn from these results.

Results

PARTICIPANTS

A total of 108 participants with 42 unique SOD1 mutations (Table S1) were enrolled in VALOR; 72 were assigned to receive tofersen and 36 to receive placebo. A total of 60 of the 108 participants made up the faster-progression subgroup in which the primary analysis was performed. A total of 95 VALOR participants (88%) were enrolled in the open-label extension (Fig. S3). The amount of missing data for the combined analysis is given below. The clinical characteristics of the participants at baseline were similar in the two trial groups for use of riluzole, edaravone, or both, time from onset of disease symptoms, baseline ALSFRS-R score, and percentage of predicted slow vital capacity. However, baseline concentrations of neurofilament light chains were 15 to 25% higher in participants who received tofersen than in those who received placebo, and the rate of decline in the ALSFRS-R score from screening to day 15 (a period of approximately 42 days) was greater in the participants who received tofersen (Table 1). The mean ALSFRS-R score at baseline was approximately 37 in both groups.
TABLE 1
Demographic and Clinical Characteristics of the Participants at Baseline (Intention-to-Treat Population).

END POINTS

Primary End Point in VALOR

Among the 60 participants in the faster-progression primary analysis subgroup, the change in the ALSFRS-R total score from baseline to week 28 was –6.98 points in the tofersen group and –8.14 points in the placebo group (difference, 1.2 points; 95% confidence interval [CI], –3.2 to 5.5; P=0.97) (Table 2).
TABLE 2
Primary and Secondary End Points in VALOR in the Faster-Progression Subgroup.

Secondary End Points in VALOR

Because statistical significance was not achieved for the primary end point, all subsequent differences between tofersen and placebo in the faster-progression subgroup are considered to be not significantly different, and no P values are presented. In the faster-progression subgroup, the total concentration of SOD1 protein in CSF was reduced by 29% in participants who received tofersen (geometric mean ratio to baseline, 0.71; 95% CI, 0.62 to 0.83), as compared with an increase of 16% (geometric mean ratio to baseline, 1.16; 95% CI, 0.96 to 1.40) in those who received placebo (between-group difference in geometric mean ratio, 0.62; 95% CI, 0.49 to 0.78) (Table 2). The total concentration of SOD1 protein in CSF was reduced by 40% in the tofersen-treated slower-progression subgroup, as compared with a reduction by 19% in the participants in the slower-progression subgroup who received placebo (between-group difference in geometric mean ratio, 0.74; 95% CI, 0.63 to 0.88) (Table S4). The mean concentration of neurofilament light chains in plasma was reduced by 60% in the tofersen-treated faster-progression subgroup and increased 20% with placebo (between-group difference in geometric mean ratio, 0.33; 95% CI, 0.25 to 0.45) (Table 2).
In the faster-progression subgroup, the percentage of predicted slow vital capacity declined by 14.3 points from baseline to week 28 among participants who received tofersen and declined by 22.2 points among those who received placebo (difference, 7.9 percentage points; 95% CI, –3.5 to 19.3) (Table 2). The change from baseline to week 28 in handheld dynamometry megascore was −0.34 in the tofersen group and −0.37 in the placebo group (difference, 0.02; 95% CI, –0.21 to 0.26). The median time to death or permanent ventilation could not be estimated owing to the small number of events; no difference was observed in the percentage of participants who died or required permanent ventilation in the tofersen group (10%) or in the placebo group (10%) (hazard ratio, 1.39; 95% CI, 0.22 to 8.80). The median time to death could not be estimated, with one event (3% of participants) in the tofersen group and no events in the placebo group (Table 2). Descriptive analyses in the slower-progression subgroup during VALOR are provided in Table S4.

COMBINED VALOR AND OPEN-LABEL EXTENSION

After completion of VALOR, 95 participants (88%) were enrolled in the nonrandomized open-label extension, with 63 (88%) originally assigned to receive tofersen and 32 (89%) originally assigned to receive placebo. At the time of the most recent data cutoff (January 16, 2022), 49 participants (68%) in the early-start cohort and 18 (50%) in the delayed-start cohort remained in the open-label extension. All 108 participants who underwent randomization in VALOR were included in the analysis of the combined data set for VALOR and the open-label extension, whether they were previously included as part of the faster-progression or slower-progression subgroup. In early-start participants, reductions in the total SOD1 concentration in CSF and the concentration of neurofilament light chains in plasma were numerically sustained over time; delayed-start participants had similar reductions during the open-label extension (Figure 1). At 52 weeks, the change in the ALSFRS-R score from the VALOR baseline was −6.0 points for early-start participants and −9.5 points for delayed-start participants (difference, 3.5 points; 95% CI, 0.4 to 6.7). Imputation for week 52 was required for missing data in 15 participants (21%) in the early-start cohort and 8 participants (22%) in the delayed-start cohort (Figure 2).
FIGURE 1
Total Superoxidase Dismutase 1 (SOD1) Concentrations in Cerebrospinal Fluid (CSF) and Concentrations of Neurofilament Light Chains (NfL) in Plasma.
FIGURE 2
Analyses of Clinical Function and Survival.
The change in the percentage of predicted slow vital capacity from the VALOR baseline was −9.4% for early-start participants and −18.6% for delayed-start participants (difference, 9.2 percentage points; 95% CI, 1.7 to 16.6). The change in handheld dynamometry megascore from the VALOR baseline was −0.17 for early-start participants and −0.45 for delayed-start participants (difference, 0.28; 95% CI, 0.05 to 0.52). Figure 2 and Table S5 show the results of the ALSFRS-R score, the percentage of predicted slow vital capacity, and the handheld dynamometry megascore for the combined analyses of VALOR and the open-label extension.
The median time to death or permanent ventilation and the median time to death could not be estimated owing to the limited number of events. For early-start participants as compared with delayed-start participants, the hazard ratio for time to death or permanent ventilation was 0.36 (95% CI, 0.14 to 0.94), and the hazard ratio for time to death was 0.27 (95% CI, 0.08 to 0.89) (Table S5). In a descriptive analysis, the disease duration in the 16 participants of special interest with p.Ala5Val mutations who received tofersen was a median of 1.73 years (range, 0.88 to 3.68), with 3 of these participants remaining in the trial at the time of the data cutoff (range for the 3 ongoing participants, 1.89 to 3.68 years) (Fig. S4).

SAFETY AND ADVERSE EVENTS

Most adverse events across VALOR and the open-label extension were mild to moderate in severity and did not cause withdrawal or discontinuation of the trial agent. Most adverse events were consistent with ALS disease progression, conditions in the general population, or known side effects of lumbar puncture (Table 3). The most common adverse events included procedural pain, headache, pain in the arms or legs, falls, and back pain. In VALOR, the incidence of procedural pain and headache were similar among participants who received tofersen and among those who received placebo, whereas pain in the arms or legs and back pain were more common in the tofersen group (incidence higher by ≥5 percentage points) and falls were more common in the placebo group.
TABLE 3
Summary of Adverse Events.
Four participants who received tofersen in VALOR (6%) and three participants in the open-label extension (constituting 7% of all participants who received tofersen) had a total of eight neurologic serious adverse events, including myelitis, chemical or aseptic meningitis, lumbar radiculopathy, increased intracranial pressure, and papilledema. The participant with myelitis was hospitalized approximately 1 week after the fifth dose of tofersen, received glucocorticoids and plasma exchange, and received no further trial treatment. Within 3 months after the last dose of tofersen, this participant had resolution of neurologic signs, symptoms, and findings on imaging.
In VALOR, 42 participants (58%) in the tofersen group and 2 participants (6%) in the placebo group had at least one CSF white-cell count of more than 10 cells per cubic millimeter, and approximately 40% of the participants had elevated CSF protein concentrations at baseline. The median CSF protein concentration increased by 110 mg per liter in the tofersen group and decreased by 15 mg per liter in the placebo group. Similar incidences of CSF pleocytosis and elevated protein concentrations were observed during the open-label extension.

Discussion

In the 28-week randomized VALOR component of the trial, tofersen was associated with reductions in the total concentration of SOD1 protein in CSF, an indirect marker of target engagement, and the concentration of neurofilament light chains in plasma, a marker of axonal injury and neurodegeneration. Despite these results, no significant difference was seen at 28 weeks in the change from baseline in the ALSFRS-R score between tofersen and placebo in a subgroup predicted to have faster progression, and no definitive differences were seen in other clinical end points in this subgroup. At 52 weeks in a prespecified combined analysis of VALOR and its open-label extension, participants who started tofersen at the beginning of VALOR, irrespective of fast or slow progression, had a smaller numeric decline in the ALSFRS-R score, the percentage of predicted slow vital capacity, and handheld dynamometry megascore than those who started tofersen in the open-label extension 28 weeks later. Limitations in interpreting the results of the combined analysis include the absence of adjustment of the widths of confidence intervals for multiple comparisons in the analysis of differences between the early-start and delayed-start cohorts, approximately 20% of missing end-point data that required imputation, and the results of the VALOR component of the trial being known at the time of analysis.
Neurologic serious adverse events, including myelitis, chemical or aseptic meningitis, lumbar radiculopathy, increased intracranial pressure, and papilledema, occurred in approximately 7% of the participants receiving tofersen. The underlying mechanism of myelitis and the relationship to CSF pleocytosis and protein elevations could not be established.
At the time that the trial was designed, SOD1 mutation type and prerandomization ALSFRS-R slope were considered to be appropriate tools for addressing the heterogeneity of disease progression in SOD1 ALS, but neither is consistently prognostic over a short trial period. Although the prognostic usefulness of neurofilament light chains had been characterized at that time, assay limitations precluded randomization according to an individual participant’s baseline concentration of neurofilament light chains, which would have enabled better balance across trial groups. Instead, subgroup analyses were prespecified in our trial and defined according to the median baseline concentration of neurofilament light chains. This approach helped to address imbalances in baseline characteristics (concentration of neurofilament light chains in plasma and ALSFRS-R decline from screening to day 15) but made use of arbitrary subgrouping rather than controlling for each participant’s baseline concentration of neurofilament light chains (see Section S2 in the Supplementary Appendix). To address individual disease heterogeneity, the baseline concentration of neurofilament light chains in plasma was incorporated as a covariate across analyses. This alteration to the analysis plan was specified after the VALOR results and initial results from the combined VALOR and open-label extension were available but before the latest combined analysis was conducted. As testing of neurofilament light chains becomes more readily available, randomization based on the concentration of neurofilament light chains in plasma as a continuous variable may be considered in future ALS clinical trials.
The duration and size of VALOR were determined on the basis of available but limited data from 12 SOD1 mutation carriers with rapidly progressing disease who received placebo in the tofersen phase 1–2 multiple-ascending-dose study15 and the phase 2 trial of arimoclomol, a heat-shock protein coinducer that promotes nascent protein folding.25 These persons had a rapid decline in function over the period of these studies. In contrast, the participants who received placebo in the enriched faster-progression subgroup in VALOR had declines that were three times as slow as those projected by the data.
The possible signal of differences in clinical end points between the early-start and delayed-start cohorts in the combined analysis of VALOR and the open-label extension, with the limitations mentioned, suggests that a trial duration of more than 28 weeks may be required to determine the effect of tofersen in patients with this disorder.26,27 Earlier or presymptomatic intervention is being investigated in the ongoing ATLAS trial (ClinicalTrials.gov number, NCT04856982).28
In the 28-week VALOR component of this trial of intrathecal administration of the antisense oligonucleotide tofersen in patients with SOD1 ALS, there was not a significant difference in the decline on a composite measure of ALS progression as compared with placebo. Tofersen was associated in a limited number of participants with adverse events, including myelitis. The potential effects of earlier as compared with delayed initiation of tofersen are being further evaluated in the ongoing extension phase.

NOTES

data sharing statement provided by the authors is available with the full text of this article at NEJM.org.
Supported by Biogen.
Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.
We thank the participants in VALOR and the open-label extension and their families and caregivers, without whom this trial would not have been possible; members of global patient advocacy organizations; site staff (see the Supplementary Appendix); Christine Nelson, Pharm.D. (Biogen), and Yien Liu, Ph.D. (Excel Scientific Solutions), for medical writing assistance with earlier versions of the manuscript; and Cara Dickinson, B.A. (Excel Scientific Solutions), for assistance with copyediting and styling of an earlier version of the manuscript in accordance with Journal requirements.

SUPPLEMENTARY MATERIAL

Protocol (nejmoa2204705_protocol.pdf)
Supplementary Appendix (nejmoa2204705_appendix.pdf)
Disclosure Forms (nejmoa2204705_disclosures.pdf)
Data Sharing Statement (nejmoa2204705_data-sharing.pdf)

REFERENCES

1.
Bunton-Stasyshyn RK, Saccon RA, Fratta P, Fisher EM. SOD1 function and its implications for amyotrophic lateral sclerosis pathology: new and renascent themes. Neuroscientist 2015;21:519-529.
2.
Müller K, Brenner D, Weydt P, et al. Comprehensive analysis of the mutation spectrum in 301 German ALS families. J Neurol Neurosurg Psychiatry 2018;89:817-827.
3.
Huai J, Zhang Z. Structural properties and interaction partners of familial ALS-associated SOD1 mutants. Front Neurol 2019;10:527-527.
4.
Bali T, Self W, Liu J, et al. Defining SOD1 ALS natural history to guide therapeutic clinical trial design. J Neurol Neurosurg Psychiatry 2017;88:99-105.
5.
Amyotrophic Lateral Sclerosis online Database. SOD1 gene summary (https://alsod.ac.uk/output/gene.php/SOD1).
 
[ 打印 ]
評論
目前還沒有任何評論
登錄後才可評論.