sequences

The sequences (an), (bn), and (cn) are defined by a0 = 1, b0 = 0, c0 = 0, and
an = an-1 + cn-1 / n, bn = bn-1 + an-1 / n, cn = cn-1 + bn-1 / n
for all n>=1.

Prove that:
| an – (n+1)/3 | =1

所有跟帖: 

回複:sequences -藍糊塗- 給 藍糊塗 發送悄悄話 (49 bytes) () 01/14/2010 postreply 06:30:15

Let me try -innercool- 給 innercool 發送悄悄話 innercool 的博客首頁 (766 bytes) () 01/14/2010 postreply 14:02:36

回複:Let me try -藍糊塗- 給 藍糊塗 發送悄悄話 (40 bytes) () 01/15/2010 postreply 06:14:28

回複:回複:Let me try -innercool- 給 innercool 發送悄悄話 innercool 的博客首頁 (593 bytes) () 01/15/2010 postreply 08:33:55

回複:回複:回複:Let me try -藍糊塗- 給 藍糊塗 發送悄悄話 (0 bytes) () 01/15/2010 postreply 08:39:07

回複:回複:回複:Let me try -藍糊塗- 給 藍糊塗 發送悄悄話 (5 bytes) () 01/15/2010 postreply 08:41:14

回複:回複:回複:Let me try -jinjing- 給 jinjing 發送悄悄話 (73 bytes) () 01/15/2010 postreply 11:39:57

master jinjing不得了。數學頂瓜瓜,提琴也會拉:) -戲雨飛鷹- 給 戲雨飛鷹 發送悄悄話 戲雨飛鷹 的博客首頁 (0 bytes) () 01/15/2010 postreply 18:42:08

回複:sequences -haha2000- 給 haha2000 發送悄悄話 (277 bytes) () 01/15/2010 postreply 07:18:25

回複:回複:sequences -藍糊塗- 給 藍糊塗 發送悄悄話 (61 bytes) () 01/15/2010 postreply 08:37:04

請您先登陸,再發跟帖!