回複:回複:Let me try

回答: Let me tryinnercool2010-01-14 14:02:36

By the recursion equations for A_n, B_n and C_n we have

A_n=A_{n-1}+C_{n-1}/n
B_n=B_{n-1}+A_{n-1}/n
C_n=C_{n-1}+B_{n-1}/n.

Now squaring both sides and adding these three equations together:
S_n=(1+1/n*n)S_{n-1}+2/n(A_{n-1}*B_{n-1}+B_{n-1}*C_{n-1}+C_{n-1}*A_{n-1}).

Since A_{i}+B_{i}+C_{i}=0 for every i,
A_i*B_i+B_i*C_i+C_i*A_i
=-(B_i+C_i)*(B_i+C_i)+B_i*C_i
=-(B_i*B_i+C_i*C_i+B_i*C_i)
=-1/2(2*B_i*B_i+2*C_i*C_i+2B_i*C_i)
=-1/2(A_i*A_i+B_i*B_i+C_i*C_i)
=-1/2*S_{i}.
Now letting i=n-1 gives the desired equation.

On the other hand,

所有跟帖: 

回複:回複:回複:Let me try -藍糊塗- 給 藍糊塗 發送悄悄話 (0 bytes) () 01/15/2010 postreply 08:39:07

回複:回複:回複:Let me try -藍糊塗- 給 藍糊塗 發送悄悄話 (5 bytes) () 01/15/2010 postreply 08:41:14

回複:回複:回複:Let me try -jinjing- 給 jinjing 發送悄悄話 (73 bytes) () 01/15/2010 postreply 11:39:57

master jinjing不得了。數學頂瓜瓜,提琴也會拉:) -戲雨飛鷹- 給 戲雨飛鷹 發送悄悄話 戲雨飛鷹 的博客首頁 (0 bytes) () 01/15/2010 postreply 18:42:08

請您先登陸,再發跟帖!