戴榕菁
在愛因斯坦1905年發表裏程碑式的“Does the Inertia of a Body Depend Upon Its Energy-content?”【[1]】之前已有一些牛人們紛紛提出E=mc2或者E=a mc2 (a為係數)。其中最牛的當然要數據說是最早推導出E = 4/3mc2的湯姆遜(J. J. Thomson),也就是用湯姆遜雲室發現電子的那個英國牛人。但據說他的論證比較粗糙,所以搞出橢球體的美國牛人海維賽德對他的推導過程進行了修改,但結果仍是E = 4/3mc2【[2],[3]】。這兩個人的推導我都沒找到,不過我發現海維賽德喜歡整理他人的推導或推導結果。今天大家熟知的麥克斯韋方程據說不是麥克斯韋當初得出的形式,而是海維賽德整理後的形式,因此也常被稱為麥克斯韋-海維賽德(Maxwell-Heaviside)方程。這或許因為海維賽德與其他牛人不同,他是一位電氣工程師,比起不拘小節的物理學家們來,工程師更注重形式的規範整齊。而文獻【3】中更是聲稱海維賽德在1889年就直接用了E = mc2,但是我查不到海維賽德在1889年的相關原文。
文獻【2】中提到那位長期與愛因斯坦辯論的亞伯拉罕(Max Abraham)也得出了E = 4/3mc2,我沒找到亞伯拉罕的原文,卻在另一位牛人的文章中看到了引用亞伯拉罕的文章。那位牛人叫做Hasenöhrl,我試著穀歌上找到他的名字中譯文,結果是“兔子伯爵”。Hasenöhrl在1904年推導出m = (8⁄3)E/c2,但後來在亞伯拉罕的建議下他將結果改為E = 4/3mc2【[4]】,在文獻【4】的參考文獻中Hasenöhrl給出了亞伯拉罕的相關文章【[5]】,但我在網上找不到該文。
還有一位牛人,名叫Preston,他在1875年(比湯姆遜還早)在他的書“Physics of the Ether”【[6]】中給出了下麵這段話:
【To give an idea, first, of the enormous intensity of the store of energy attainable by means of that extensive state of subdivision of matter which renders a high normal speed practicable, it may be computed that a quantity of matter representing a total mass of only one grain, and possessing the normal velocity of the ether particles (that of a wave of light), encloses a store of energy represented by upwards of one thousand millions of foot-tons, or the mass of one single grain contains an energy not less than that possessed by a mass of forty thousand tons, moving at the speed of a cannon ball (1200 feet per second); or other wise, a quantity of matter representing a mass of one grain endued with the velocity of the ether particles, encloses an amount of energy which, if entirely utilized, would be competent to project a weight of one hundred thousand tons to a height of nearly two miles (1.9 miles).】
這段話被認為等價於E = mc2。該書可在https://books.googleusercontent.com下載,但我這裏無法給出下載鏈接,因為每次下載的鏈接好像都不一樣。感興趣的人可以自己去搜索下載。
還有一個牛人比Preston還早,名叫Mayer,他在1867年就直接說出表示E = mc2的下麵這段話【[7]】:
【If a mass M, originally at rest, while traversing the effective space s, under the influence and in the direction of the pressure p, acquires the velocity c, we have ps = mc2. Since, however, every production of motion implies the existence of a pressure (or of a pull) and an effective space, and also the exhaustion of one at least of these factors, the effective space, it follows that motion can never come into existence except at the cost of this product, ps = mc2. And this it is which for shortness I call ‘force’】
不過他的邏輯很奇怪,而且量綱也很混亂。
還有一位名叫Olinto De Pretto的牛人在1903年在他的“宇宙生命中的以太假說(IPOTESI DELL'ETERE NELLA VITA DELL'UNIVERSO)”一文中也直接說出含有E = mc2的下麵這段話【[8]】:
【Ma tale deduzione ci conduce a delle conseguenze inattese ed incredibili. Un chilogrammo di materia, lanciato con la velocità della luce, rappresenterebbe una somma di tale energia da non poterla nè anche concepire.
La formula mv2 ci dà la forza viva e la formula ci dà, espressa in calorie, tale energia.
Dato adunque m = 1 e v uguale a trecentomila chilometri per secondo, cioè 300 milioni di metri, che sarebbe la velocità della luce, ammessa anche per l'etere, ciascuno potrà vedere che si ottiene una quantità di calorie rappresentata da 10794 seguito da 9 zeri e cioè oltre dieci milioni di milioni.
A quale risultato spaventoso ci ha mai condotto il nostro ragionamento? Nessuno vorrà facilmente ammettere che immagazzinata ed allo stato latente, in un chilogrammo di materia qualunque, completamente nascosta a tutte le nostre investigazioni, si celi una tale somma di energia, equivalente alla quantità che si può svolgere da milioni e milioni di chilogrammi di carbone; l'idea sarà senz'altro giudicata da pazzi.】
文中的v就是我們通常用c表示的光速。上麵這段話用穀歌翻譯成中文為:
【但是這種推論會導致我們意想不到和難以置信的後果。 以光速發射的一公斤物質所代表的能量之和,我們甚至無法想象。
mv2 公式給了我們生命力,公式給了我們以卡路裏表示的能量。
因此給定 m = 1 和 v 等於每秒三十萬公裏,即 3 億米,這將是光速,以太也承認,每個人都可以看到我們得到了 10794 表示的卡路裏數量後麵跟著9個零就是千萬以上。
我們的推理使我們得出什麽可怕的結果? 沒有人會輕易承認,儲存和潛藏在一公斤任何物質中,完全隱藏在我們所有的調查之外,隱藏著這樣的能量總和,相當於數百萬和數百萬公斤煤炭可以開發的數量; 這個想法無疑會受到瘋子的評判。】
當然,Olinto De Pretto在1903年的這段話是在另一位大名鼎鼎的牛人龐加萊於1900年嚴格推導出等價於E = mc2的公式【[9]】之後,所以不排除他是受到龐加萊的影響。
結束語
列舉了這麽多在1905年之前推出或說出E = mc2或與之相近的公式的牛人之後,我們可以看出不但他們的結果都錯了,而且無法從他們得出相關結果的過程中得出正確的結果。相比之下,愛因斯坦比他們都更牛,因為由愛因斯坦提供的推導,隻要放棄錯誤的洛倫茲變換,就可按我在前兩天的推導【[10],[11]】來得出下麵這個正確的結果:
E = mc2/2
。。。。。。
我猜看到這裏,很多人開始在心裏打嘀咕了:“所有的其他人(而且都是名氣爆棚的人)都要麽得出E = mc2要麽得出E = 4/3mc2,最關鍵的是那麽多著名的牛的爆棚的人都得出與愛因斯坦一樣的E = mc2,而且還有NIST背書,你這個無名人之輩得出的E = mc2/2恐怕是有問題的了。”
那好吧,我隻能說咱們就走著瞧吧。關鍵是我認為除了用到由錯誤的洛倫茲變換得出的所謂的計算光能的相對論多普勒效應之外,愛因斯坦的推導質量-能量關係的邏輯是正確嚴格的。
唉,這些年來我早已習慣了和大多數人持不同意見的狀態了,也不多這一件。
我隻是要再強調一遍:真正正確的質量-能量關係是:
E = mc2/2
咱們走著瞧。。。。。。
[[1]] Einstein, A. (1905a). “Does the Inertia of a Body Depend Upon Its Energy-content?”. Retrieved from: https://www.fourmilab.ch/etexts/einstein/E_mc2/e_mc2.pdf
[[2]]Rothman, T. (2015). “Was Einstein the First to Invent E = mc2?”. Retrieved from: http://www.naturalphilosophy.org/site/harryricker/2015/05/23/the-origin-of-the-equation-e-mc2/
[[3]]Ricker, HH. (2015). “The Origin of the Equation E = mc2”. Retrieved from: http://www.dankalia.com/delloro/gravity-cone/The%20Origin%20of%20the%20Equation%20E%20=%20mc2.htm
[[4]] Hasenöhrl, F. (1904). “On the Theory of Radiation in Moving Bodies. Correction”. Retrieved from: https://en.wikisource.org/wiki/Translation:On_the_Theory_of_Radiation_in_Moving_Bodies. Correction
[[5]] Abraham, M. (1904). Ann. d. Phys. 14. p. 244. 1904.
[[6]] Preston, S. T. (1875). “Physics of the Ether”, E. & F. N. Spon, London, 1875, #165
[[7]] Mayer, J. R. (1867) “Remarks on the Mechanical Equivalent of Heat,” The Correlation and Conservation of Forces, translated by J. C. Foster, pp. 331, 336
[[8]]OLINTO DE PRETTO, DD. (1903) “IPOTESI DELL'ETERE NELLA VITA DELL'UNIVERSO”. Retrieved from: http://www.cartesio-episteme.net/st/mem-depr-vf.htm
[[9]] Poincaré, H. (1900). The Theory of Lorentz and The Principle of Reaction. Retrieved from: http://www.physicsinsights.org/poincare-1900.pdf
[[10]] 戴榕菁 (2023)沒了洛倫茲,能量減半。。。。
[[11]] 戴榕菁 (2023)關鍵是如何計算多普勒效應
Oliver Heaviside FRS(1850年5月18日-1925年2月3日)是英國自學成才的數學家和物理學家,他發明了求解微分方程的新技術(相當於拉普拉斯變換),獨立發展了向量微積分, 並以當今常用的形式重寫了麥克斯韋方程組。 在麥克斯韋死後的幾十年裏,他極大地塑造了人們理解和應用麥克斯韋方程組的方式。 他提出的電報員方程式在他有生之年就具有重要的商業意義,此前很長一段時間人們都沒有注意到這些方程式的重要性,因為當時很少有人精通他的新方法。 盡管 Heaviside 在他一生的大部分時間裏都與科學機構不一致,但他改變了電信、數學和科學的麵貌。
我比較欣賞這句話“在他一生的大部分時間裏都與科學機構不一致”,嗬嗬,好樣的!
Oliver Heaviside FRS[1] (/?h?visa?d/; 18 May 1850 – 3 February 1925) was an English self-taught mathematician and physicist who invented a new technique for solving differential equations (equivalent to the Laplace transform), independently developed vector calculus, and rewrote Maxwell's equations in the form commonly used today. He significantly shaped the way Maxwell's equations are understood and applied in the decades following Maxwell's death. His formulation of the telegrapher's equations became commercially important during his own lifetime, after their significance went unremarked for a long while, as few others were versed at the time in his novel methodology.[2] Although at odds with the scientific establishment for most of his life, Heaviside changed the face of telecommunications, mathematics, and science.[2]