這道題是挺有意思,整個圖形有對稱性,想到兩種解法
1. 利用梅涅勞斯(Menelaus)定理
設 BM:ML:LE = a:b:c
則對三角形ABE和直線FC用梅氏定理,有
BM/ME * EC/CA * AF/FB = 1
即 a/(b+c) * 2/3 * 2/1 = 1
a/(b+c) = 3/4 ---- (1)
再對三角形BCE和直線DA用梅氏定理,有
BD/DC * CA/AE * EL/LB= 1
2/1 * 3/1 * c/(a+b) = 1
c/(a+b) = 1/6 --- (2)
由(1),(2)可解出 a:b:c = 3:3:1
同理可得
AL:LN:ND = CN:NM:MF = BM:ML:LE = a:b:c = 3:3:1
於是 S_LMN = LM/BL * S_BNL
= LM/BL * NL/OL * S_BDL
= LM/BL * NL/OL * DL/AD * S_ABD
= LM/BL * NL/OL * DL/AD * BD/BC * S_ABC
= b/(a+b) * b/(b+c) * (b+c)/(a+b+c) * 2/3 * S_ABC
= b^2/((a+b)(a+b+c)) * 2/3 * S_ABC
= 3^2/(6*7) * 2/3 * S_ABC
= 1/7 * S_ABC
= 35/7
= 5
2. 向量法
任取一點O做原點, 設O指向三角形頂點的向量分別為
OA = a
OB = b
OC = c
// 注: 除開特別標明,所有變量都是向量
設法把O指向其它點的向量也用a,b,c表示。 由|BD|:|DC|=2:1,知
OD = 1/3*OB + 2/3*OC = 1/3*b + 2/3*c
同樣,
OE = 1/3*c + 2/3*a
OF = 1/3*a + 2/3*b
現在來求OL
因為L在AD上,有數值m使得
OL = m*OA + (1-m)*OD
= m*a + (1-m)*(1/3*b + 2/3*c)
= m*a + (1-m)/3*b + 2(1-m)/3*c --- (1)
L又在BE上,因此有數值n使得
OL = n*OB + (1-n)*OE
= n*b + (1-n)*(1/3*c + 2/3*a)
= 2(1-n)/3*a + n*b + (1-n)/3*c --- (2)
因此 m = 2(1-n)/3
(1-m)/3 = n
2(1-m)/3 = (1-n)/3
可得 m=4/7, n=1/7
因此 OL = 4/7*a + 1/7*b + 2/7*c
由對稱性可知
OM = 4/7*b + 1/7*c + 2/7*a
ON = 4/7*c + 1/7*a + 2/7*b
MN = ON-OM = -1/7*a - 2/7*b + 3/7*c
= -2/7(b-a) + 3/7(c-a)
= -2/7*p + 3/7*q
/// p=b-a, q=c-a
ML = OL-OM = 2/7*a -3/7*b + 1/7*c
= -3/7(b-a) + 1/7(c-a)
= -3/7*p + 1/7*q
如是
S_LMN = 1/2 * (MN x ML) // x 表示叉乘
= 1/2 * (-2/7*p + 3/7*q) x (-3/7*p + 1/7*q)
= 1/2 * 1/49 * (-2p + 3q) x (-3p + q)
= 1/2 * 1/49 * (-2pxq - 9qxp)
= 1/2 * 1/49 * (-2pxq + 9pxq)
= 1/2 * 1/49 * 7 * (pxq)
= 1/2 * 1/7 * (2*S_ABC)
= 1/7 * S_ABC
= 5