由二次方程根的公式,絕對值大的那個解的絕對值是
[|a| + 根號(|a|^2 - 4b)]/2 < 2 (1)
即
|根號(|a|^2 - 4b) < 4 - |a|
平方化簡就得 2|a| < 4 + b
由(1)直接可得
|a| <= [|a| + 根號(|a|^2 - 4b)] < 4. (2)
b >=0, 由判別式非負,加上(2) 可得 b < 4.
b<0, 0 <= 2|a| < 4 + b, -b < 4.
由二次方程根的公式,絕對值大的那個解的絕對值是
[|a| + 根號(|a|^2 - 4b)]/2 < 2 (1)
即
|根號(|a|^2 - 4b) < 4 - |a|
平方化簡就得 2|a| < 4 + b
由(1)直接可得
|a| <= [|a| + 根號(|a|^2 - 4b)] < 4. (2)
b >=0, 由判別式非負,加上(2) 可得 b < 4.
b<0, 0 <= 2|a| < 4 + b, -b < 4.
WENXUECITY.COM does not represent or guarantee the truthfulness, accuracy, or reliability of any of communications posted by other users.
Copyright ©1998-2025 wenxuecity.com All rights reserved. Privacy Statement & Terms of Use & User Privacy Protection Policy