x^2/(x+y^2) = x - xy^2/(x+y^2)
原不等式等價於:
xy^2/(x+y^2) + yz^2/(y+z^2) + zx^2/(z+x^2)
因x+y^2 >= 2sqrt(xy^2), 歸結於證明
xsqrt(z) + ysqrt(x) + zsqrt(y)
由柯西不等式,
LHS^2
因xz+yx+zy
x^2/(x+y^2) = x - xy^2/(x+y^2)
原不等式等價於:
xy^2/(x+y^2) + yz^2/(y+z^2) + zx^2/(z+x^2)
因x+y^2 >= 2sqrt(xy^2), 歸結於證明
xsqrt(z) + ysqrt(x) + zsqrt(y)
由柯西不等式,
LHS^2
因xz+yx+zy
WENXUECITY.COM does not represent or guarantee the truthfulness, accuracy, or reliability of any of communications posted by other users.
Copyright ©1998-2025 wenxuecity.com All rights reserved. Privacy Statement & Terms of Use & User Privacy Protection Policy