試解

來源: 2015-04-20 13:19:14 [舊帖] [給我悄悄話] 本文已被閱讀:

x^2/(x+y^2) = x - xy^2/(x+y^2)

原不等式等價於:

xy^2/(x+y^2) + yz^2/(y+z^2) + zx^2/(z+x^2)
因x+y^2 >= 2sqrt(xy^2), 歸結於證明

xsqrt(z) + ysqrt(x) + zsqrt(y)
由柯西不等式,

LHS^2
因xz+yx+zy