x^2/(x+y^2) = x - xy^2/(x+y^2) 原不等式等價於: xy^2/(x+y^2) + yz^2/(y+z^2) + zx^2/(z+x^2) 因x+y^2 >= 2sqrt(xy^2), 歸結於證明 xsqrt(z) + ysqrt(x) + zsqrt(y) 由柯西不等式, LHS^2 因xz+yx+zy