三平麵:
A1*X+B1*Y+C1*Z=D1
A2*X+B2*Y+C2*Z=D2
A3*X+B3*Y+C3*Z=D3
1. A1/A2 = B1/B2 = C1/C2 != D1/D2 1-2 平行
A1/A3 = B1/B3 = C1/C3 != D1/D3 1-3 平行
2. A1/A2 = B1/B2 = C1/C2 != D1/D2 1-2 平行
A1/A3 = B1/B3 = C1/C3 = D1/D3 1-3 重合
3. A1/A2 = B1/B2 = C1/C2 != D1/D2 1-2 平行
A1/A3 != B1/B3 OR A1/A3 != C1/C3 1-3 相交
4. A1/A2 = B1/B2 = C1/C2 = D1/D2 1-2 重合
A1/A3 = B1/B3 = C1/C3 = D1/D3 1-3 重合
5. A1/A2 = B1/B2 = C1/C2 = D1/D2 1-2 重合
A1/A3 != B1/B3 OR A1/A3 != C1/C3 1-3 相交
6. A1/A2 != B1/B2 OR A1/A2 != C1/C2 1-2 相交
A1/A3 != B1/B3 OR A1/A3 != C1/C3 1-3 相交
A2/A3 != B2/B3 OR A2/A3 != C2/C3 2-3 相交
(A3,B3,C3) = r*(A1,B1,C1)+s*(A2,B2,C2) but D3 != r*D1+s*D2 交線平行
7. A1/A2 != B1/B2 OR A1/A2 != C1/C2 1-2 相交
A1/A3 != B1/B3 OR A1/A3 != C1/C3 1-3 相交
A2/A3 != B2/B3 OR A2/A3 != C2/C3 2-3 相交
(A3,B3,C3,D3) = r*(A1,B1,C1,D1)+s*(A2,B2,C2,D2) 交線重合
8. (A3,B3,C3) != r*(A1,B1,C1)+s*(A2,B2,C2) for any r,s.
回複:The detail of geometry is very good.
所有跟帖:
• 謝謝您 通過解析幾何 對三個平麵的八種關係 進行代數方程的表述。收藏研究。 -皆兄弟也- ♂ (0 bytes) () 10/07/2011 postreply 09:33:49
• It should be the same as calculate the ranks of two matrix to d -wxcfan123- ♂ (160 bytes) () 10/07/2011 postreply 17:40:09
• Thanks, could you develop your ideas in more details? -皆兄弟也- ♂ (0 bytes) () 10/07/2011 postreply 18:16:43
• to determine the solution of the system: -wxcfan123- ♂ (296 bytes) () 10/07/2011 postreply 20:12:54
• 高屋建瓴: the ranks 的概念應屬線性代數範疇,初等代數的升華。謝! -皆兄弟也- ♂ (0 bytes) () 10/08/2011 postreply 09:31:55
• 回複:It should be the same as calculate the ranks of two matrix to -ym8000- ♀ (268 bytes) () 10/08/2011 postreply 05:52:17
• 高屋建瓴: the ranks 的概念應屬線性代數範疇,初等代數的升華。謝! -皆兄弟也- ♂ (0 bytes) () 10/08/2011 postreply 09:31:09