However, for ranks, there are only 6 cases: (3, 3), (3, 2), (3, 1), (2, 2), (2, 1), and (1, 1). Maybe, (3, 2) and (2, 1) could derive two cases of yours.
It should be the same as calculate the ranks of two matrix to d
所有跟帖:
• Thanks, could you develop your ideas in more details? -皆兄弟也- ♂ (0 bytes) () 10/07/2011 postreply 18:16:43
• to determine the solution of the system: -wxcfan123- ♂ (296 bytes) () 10/07/2011 postreply 20:12:54
• 高屋建瓴: the ranks 的概念應屬線性代數範疇,初等代數的升華。謝! -皆兄弟也- ♂ (0 bytes) () 10/08/2011 postreply 09:31:55
• 回複:It should be the same as calculate the ranks of two matrix to -ym8000- ♀ (268 bytes) () 10/08/2011 postreply 05:52:17
• 高屋建瓴: the ranks 的概念應屬線性代數範疇,初等代數的升華。謝! -皆兄弟也- ♂ (0 bytes) () 10/08/2011 postreply 09:31:09