回複:Thanks for your explanation. I understand now.

回答: 留下(4/3)PI*A*B^2-V,留下2SQUT3)/3PI=36.75%jinjing2010-09-13 06:28:03

You are very smart to use derivative to solve this problem.

Just wonder if anyone can use algebra to get the same answer.

所有跟帖: 

certainly,but we have to know if x+y+z=n ,when x=y=z, -jinjing- 給 jinjing 發送悄悄話 (277 bytes) () 09/13/2010 postreply 12:04:48

This is a wonderful method. -皆兄弟也- 給 皆兄弟也 發送悄悄話 皆兄弟也 的博客首頁 (149 bytes) () 09/13/2010 postreply 15:42:19

Thanks. Parameter Method. -jinjing- 給 jinjing 發送悄悄話 (233 bytes) () 09/13/2010 postreply 17:29:16

Sorry,First term is not right. -jinjing- 給 jinjing 發送悄悄話 (224 bytes) () 09/13/2010 postreply 17:47:58

此壇真乃從龍臥虎之處也。佩服,佩服。 -NaCl- 給 NaCl 發送悄悄話 (0 bytes) () 09/13/2010 postreply 21:09:47

Thanks,I'm not strong for some open questions. -jinjing- 給 jinjing 發送悄悄話 (59 bytes) () 09/14/2010 postreply 10:16:19

can you transit(a1+b1x)(a2+b2x)...(an+bnx)step by step? -皆兄弟也- 給 皆兄弟也 發送悄悄話 皆兄弟也 的博客首頁 (0 bytes) () 09/14/2010 postreply 07:59:03

Sorry,I could say clearly and have some carelessness. -jinjing- 給 jinjing 發送悄悄話 (774 bytes) () 09/14/2010 postreply 10:00:53

I really appreciate your effort. -皆兄弟也- 給 皆兄弟也 發送悄悄話 皆兄弟也 的博客首頁 (0 bytes) () 09/14/2010 postreply 10:13:56

For n,it seems (n-1)th equition should be delt with. -皆兄弟也- 給 皆兄弟也 發送悄悄話 皆兄弟也 的博客首頁 (0 bytes) () 09/14/2010 postreply 10:22:32

really wonderful. there are no (n-1)th equition . -皆兄弟也- 給 皆兄弟也 發送悄悄話 皆兄弟也 的博客首頁 (259 bytes) () 09/14/2010 postreply 10:43:52

I got this transition. but,can you show what n equations are? -皆兄弟也- 給 皆兄弟也 發送悄悄話 皆兄弟也 的博客首頁 (333 bytes) () 09/14/2010 postreply 08:41:16

Thank you,you correct me the +,-.some where.Up is answer. -jinjing- 給 jinjing 發送悄悄話 (0 bytes) () 09/14/2010 postreply 10:09:35

I got n-1 independent equations.why do you use b2+c3b3+...+cnbn? -皆兄弟也- 給 皆兄弟也 發送悄悄話 皆兄弟也 的博客首頁 (213 bytes) () 09/14/2010 postreply 10:11:26

n=2,your first Q is wrong. In fact t, you can choice any (n-1) -jinjing- 給 jinjing 發送悄悄話 (113 bytes) () 09/14/2010 postreply 10:41:32

I have realized that it is wrong. -皆兄弟也- 給 皆兄弟也 發送悄悄話 皆兄弟也 的博客首頁 (0 bytes) () 09/14/2010 postreply 10:53:35

The sum of all factors should be constant(no x). -jinjing- 給 jinjing 發送悄悄話 (150 bytes) () 09/15/2010 postreply 10:20:17

請您先登陸,再發跟帖!