WHAT IS FILTRATION?
Filtration is a process of removing particulate matter from water by forcing the water through a porous media. This porous media can be natural, in the case of sand, gravel and clay, or it can be a membrane wall made of various materials. Sometimes, large particles are settled before filtration; this is called sedimentation. For information on sedimentation and filtration, in general, see the Conventional Water Treatment: Coagulation and Filtration fact sheet.
The size of materials that can be removed during filtration depends upon the size of the pores of the filter. The chart below summarizes the various separation processes relative to common materials that would be filtered out through each process. Particle filtration refers to conventional media filtration, while the other types are membrane filtrations.
WHAT IS ULTRAFILTRATION?
An ultrafiltration filter has a pore size around 0.01 micron. A microfiltration filter has a pore size around 0.1 micron, so when water undergoes microfiltration, many microorganisms are removed, but viruses remain in the water. Ultrafiltration would remove these larger particles, and may remove some viruses. Neither microfiltration nor ultrafiltration can remove dissolved substances unless they are first adsorbed (with activated carbon) or coagulated (with alum or iron salts).
WHAT IS NANOFILTRATION?
A nanofiltration filter has a pore size around 0.001 micron. Nanofiltration removes most organic molecules, nearly all viruses, most of the natural organic matter and a range of salts. Nanofiltration removes divalent ions, which make water hard, so nanofiltration is often used to soften hard water.
WHAT IS REVERSE OSMOSIS?
Reverse osmosis filters have a pore size around 0.0001 micron. After water passes through a reverse osmosis filter, it is essentially pure water. In addition to removing all organic molecules and viruses, reverse osmosis also removes most minerals that are present in the water. Reverse osmosis removes monovalent ions, which means that it desalinates the water. To understand how reverse osmosis works, it is helpful to understand osmosis.
https://www.safewater.org/fact-sheets-1/2017/1/23/ultrafiltrationnanoandro