設AB=x, AD=y, 則
BC^2 = AB^2 + AC^2
= AB^2 + (AD + DC)^2
= x^2 + (x+y)^2
於是原題轉化為條件極值問題:
已知 x^2 + y^2 = 10^2
求 x^2 + (x+y)^2 的最大值
x^2 + (x+y)^2
= 2x^2 + 2xy + y^2
= x^2+y^2 + x^2+2xy
= 100 + x^2 + 2xy
設m=(sqrt(5)-1)/2, 則有 m(m+1) = 1
故 2xy = 2 * sqrt(m(m+1)) * xy
= 2 * sqrt(m)x * sqrt(m+1)y
<= mx^2 + (m+1)y^2
因此 100 + x^2 + 2xy
<= 100 + x^2 + mx^2 + (m+1)y^2
= 100 + (m+1)(x^2 + y^2)
= 100 + 100*(m+1)
= 100 * (m+2)
故BC的最大值是
sqrt(100 * (m+2))
= 10 * sqrt(m+2)
= 10 * sqrt((sqrt(5)+3)/2)
= 5 * sqrt(2*sqrt(5) + 6)
得到的結果比較複雜,不知有沒有算錯