隴山隴西郡

寧靜純我心 感得事物人 寫樸實清新. 閑書閑話養閑心,閑筆閑寫記閑人;人生無虞懂珍惜,以沫相濡字字真。
個人資料
  • 博客訪問:
文章分類
歸檔
正文

早感是循環論證

(2018-08-02 16:28:06) 下一個
實事求是 - 若 "實是=事實" - 早感是循環論證。今查英語,果其然 !

It’s not a proposition, so it can’t be logically right or wrong. It’s an
 admonition so it might be morally or ethically or instrumentally right or
 wrong. It’s instrumentally good advice as it applies to empirical truths. In
 mathematics and logic “true” is just a marker that preserved under the
 inference rules. “Truth” can’t be defined within an axiomatic system.
這不是一個命題,所以它在邏輯上難定是對還是錯。這是一個
 告誡, 所以它可能在道德或道德或工具上正確或
 錯誤。這是一個很好的建議,因為它適用於經驗真理。在
 數學和邏輯, “真理”不能在公理係統定義 -
 推理規則, “真理”不能在公理係統中定義。

*********
河間獻王德以孝景前二年立,修學好古,實事求是。從民得善書,必為好寫與之,留其真,加金帛賜以招之。
“漢書·河間獻王德傳”(漢書)[1]
“實事求是”(簡體中文:實事求是;繁體中文:實事求是;拚音:shí shì qiú shì; Jyutping:sat6 si6 kau4 si6)是曆史上最早出現在漢書中的表達(成語)。
最初,它描述了對學習和研究的態度。

在現代中國文化[編輯]

這個口號成為毛澤東主義的一個關鍵因素,毛澤東在1938年中共六大會議上的講話中首先引用了實用主義。毛澤東可能記得這是他的母校湖南第一師範學校的題詞。[2]從1978年開始,鄧小平進一步推動中國特色社會主義的中心思想,並在此後應用於經濟和政治改革。
 
Brent Meeker, former
Distinguished Fellow (Retired) at Naval Air Warfare Center, Weapons Division
(1962-2014)
Answered Dec 28
2017
· Author has 2.2k answers and 1.2m answer views
It’s not a proposition, so it can’t be logically right or wrong. It’s an
admonition so it might be morally or ethically or instrumentally right or
wrong. It’s instrumentally good advice as it applies to empirical truths. In
mathematics and logic “true” is just a marker that preserved under the
inference rules. “Truth” can’t be defined within an axiomatic system.
 ))))))))))
If you know, proposition = "a suggested scheme or plan of action, especially in a business context"

An admonition is advice with a hint of
scolding, a warning not to do something. When you're cautioned or warned about
some mistake you might be just about to make, or some looming danger, you're
receiving an admonition.

Axiomatic system

In mathematics, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A mathematical theory consists of an axiomatic system and all its derived theorems. An axiomatic system that is completely described is a special kind of formal system.
https://en.wikipedia.org/wiki/Axiomatic_system






[ 打印 ]
閱讀 ()評論 (0)
評論
目前還沒有任何評論
登錄後才可評論.