分享個人數據分析的單個例子

本帖於 2025-11-26 23:13:58 時間, 由普通用戶 wxcuriosity 編輯
回答: Gemini 3 真的牛很多嗎?QQQ20742025-11-26 21:25:26

我想讓AI分析一下2x ETF和3x ETF的風險。嚐試了好幾個AI chatbot. 隻有gemini和grok完全理解了我的意圖並且生成了精確的表格。chatgpt誤解了表格後麵兩列的意思。claude給出的數字接近但是並不精確,有點奇怪。我估計他們都是通過生成程序來計算的,也就是把我的問題當成了一個編程題。deepseek也生成了正確答案,但是是通過在推理過程中蠻力一行行算出來的。有點神奇,但更高效的方式應該是寫python程序,然後運行程序。kimi生成的表格後麵幾列也是錯誤的。

目前體感是gemini 3領先所有AI模型。最能準確理解我的意圖,生成的答案比較凝煉到位。chatgpt有時候誤解我的意圖,生成的答案有時候有點囉嗦。gemini 3可能不是斷代領先,但確實能感受到有明顯優勢,或者智商更高。因為有些問題gemini 3能搞定而其它AI搞不定,應該還是很有優勢的。作為開發者和用戶會傾向於用它,因為好用,最聰明。另外nano banana pro圖像生成功能按新聞感覺是斷代領先,不過我還沒有體驗。

我的prompt:

Draw a table to study the loss and requirements for recovery for 2x leveraged etf to understand its risk, with the following columns:

 

Original stock loss percentage (say 5%, 10%, 15%, 20%, 30%)
2x etf loss percentage
Percentage required to rise for original stock to recover
2x etf loss percentage after the original stock has already recovered
Percentage required to rise for 2x ETF to recover
Percentage required to rise for the original stock so 2x ETF can fully recover

 

Gemini 3 生成的答案。而且Gemini 3 用flash model (比較快而小的模型)也能得到正確答案。

Key Takeaways and Risk Explanation

The primary risk of leveraged ETFs is the effect of volatility decay (also known as compounding risk), which this table demonstrates:

  • Magnified Loss: The $2\times$ ETF magnifies the stock's loss. A $20\%$ drop in the stock results in a $40\%$ drop in the ETF.

  • Non-Linear Recovery: Due to the loss, a larger percentage gain is required to recover. A stock that drops $20\%$ needs to gain $25\%$ to break even.

  • The Compounding Effect (Volatility Decay): The most critical column is $2\times$ ETF Loss After Stock Recovers. Even after the underlying stock has fully recovered its initial loss, the $2\times$ ETF is still at a loss. For example, if the stock drops $20\%$ and then rises $25\%$ to break even, the $2\times$ ETF is still down $10.00\%$. This "decay" is the result of compounding returns on a smaller base value after the initial loss.

  • Greater Recovery Required: To fully recover the $2\times$ ETF after an initial $30\%$ drop, the ETF must gain an astonishing $150.00\%$ from its low point. This means the underlying stock must rise $75.00\%$ (since it's a $2\times$ leveraged product) from the ETF's low point, which is far greater than the $42.86\%$ the stock needed just to recover its own initial $30\%$ loss.

所有跟帖: 

請您先登陸,再發跟帖!