我現在編程也常常讓AI過目一下,能查到不少漏洞或弱點。。。

回答: But it gives you following sugegstion, LOL三心三意2025-08-20 06:03:00

Key nits (easy fixes/notes):

  1. Function/name mismatch – you use ['Close'] but the function is called get_adj_close_data.

    • If you truly want adjusted prices (usually better for returns): change to ['Adj Close'] (or rename the function). [yf.download default prices to adjusted prices]

  2. Month-end pick – your groupby(...).tail(1) works; resample('M').last() is a common alternative. Either is fine. [resample('M').last() would show month-end date instead of original date]

  3. Benchmark total return – you already noted this: ^GSPC is price index (no dividends). Beta/vol are fine, but long-run return comps will be lower than total return. [Unfortunately ^SP500TR does not work here, don't know why]

  4. Excel save – you create the workbook but don’t save it. Add something like wb.save('beta_report.xlsx') (and optionally wb.close()).

  5. Column formatting – your ranges match the output layout:

    • B (beta), C (rho), F (vol ratio) → 0.0000

    • D (sigma_s), E (sigma_m) → 0.0000% (those are decimals; percent format is appropriate)

  6. Type hints – list[str] needs Python 3.9+. For broader compatibility: from typing import List then tickers: List[str].

  7. Data gaps/NaNs – pandas’ corr skips NaNs pairwise, so you’re fine. Just be aware early months can be sparse for some tickers.

  8. yf.download end date – yfinance usually treats end as inclusive for daily data, but behavior can vary; your 5y+15d window gives enough buffer either way.

請您先登陸,再發跟帖!