有趣的概率問題 一

一 Bertrand的盒子悖論

 

1

 

有三個外表一模一樣的盒子,裏麵分別裝有兩枚硬幣:其中一個兩枚都是金幣,一個兩枚都是銀幣,剩下的則一金一銀。現在隨機選定一個盒子,並從裏麵隨機抽取一個硬幣,發現是金幣,請問剩下的那枚也是金幣的概率是多少?

這就是著名的Bertrand 盒子悖論(Bertrand's box paradox),最先由法國數學家Joseph Louis François Bertrand (11 March 1822 – 5 April 1900) 提出來的。

嚴格說來,這個不能算真正的悖論,它和說謊者悖論與理發師悖論不同:那兩個悖論都叫你左右為難,不知所措,而這個卻不同,隻能算是一個難題。

它真是一個難題嗎?難在什麽地方呢?它的神秘之處在於:如果你匆忙作答,很容易給出錯誤的答案,讀者不妨先試試看。

這個悖論也有一個變種,叫卡片悖論:有三張卡片,一張兩麵皆黑,一張兩麵皆白,剩下的則一麵白一麵黑。你隨機抽取一張卡片平放在桌麵上,發現是黑的,請問另一麵也是黑色的概率是多少?

 

2

 

你的答案是什麽呢?是1/2嗎?如果是,恭喜你,你錯了。

你的1/2絕對不是空穴來風,也許下麵就是你的推理。

1. 每個盒子被選中的機會是平等的。

2.既然有一個是金幣,所以不可能是兩個銀幣的那個盒子。

3.這樣隻能是剩下的兩個盒子之一:要麽兩個都是金幣,要麽一金一銀。

4.兩個盒子被選中的機會是一樣的,答案自然是1/2

這個推理沒問題呀,1/2隻對不錯。

但它確確實實是錯誤的!

到底哪裏出了紕漏?正確的答案又是什麽?

 

3

 

前三步的斷言是正確的,紕漏就在第四步,那兩個盒子被選中的概率是不一樣的,這就涉及到了條件概率。

什麽是條件概率?條件概率是指在已知某事件E發生後某事件X發生的概率。

ABC分別表示兩個都是金幣的盒子,兩個都是銀幣的盒子和一金一銀的盒子。用E表示抽出的硬幣是金色的,用F表示另一枚硬幣也是金色的。用P(X)表示事件X發生的概率,用P(X|Y)表示已知事件Y已經發生的情況下X發生的條件概率。一開始,我們的確有P(A)=P(B)=P(C)=1/3,也即三個盒子被選中的概率各占三分之一。但是在已知E發生後,情況起了變化。比如,P(BE)=0,換句話說,在已知一個是金幣的情況下,兩個都是銀幣就不可能了。

我們先回顧一下條件概率公式:P(X|Y)=P(XY)/P(Y)。不難發現P(E)=1/2P(EF)=P(A)=1/3。於是有P(F|E)=P(EF)/P(E)=2/3。這才是正確的答案。

 

4

 

不用條件概率公式,能不能算出答案呢?

能!我們們用(X,Y)表示抽中的盒子是X,選出的硬幣是Y。於是所有的可能結果即樣本空間是:(A,金1)(A,金2),(B,銀1),(B,銀2),(C,金)和(C,銀)。現在已知(A,金1)(A,金2)和 C,金)之一已經發生,因此兩個都是金幣的概率就是2/3了。

 

5

 

還有一個辦法可以幫助我們找到正確答案。

我們隨機選取一個盒子,裏麵的兩個硬幣相同(指同為金或同為銀)的概率是多少?答案很顯然是2/3。所以當我們已知一個硬幣是金幣的時候,另一個也是金幣的概率就是2/3了。

另外還可以通過全概率公式導出答案:

P(A)=P(E)P(A|E)+P(~E)P(A|~E)=1/2 • P(A|E)=1/3,從而P(A|E)=2/3

 




更多我的博客文章>>>

所有跟帖: 

清楚明白,是專業或業餘科普作家? :) -JSL2023- 給 JSL2023 發送悄悄話 (0 bytes) () 02/25/2024 postreply 12:27:33

直觀來說,雙金盒子提供了兩種可能,同一金幣可第一次抽取,也可能第二次抽取。-金一銀盒子提供一種可能。 -QualityWithoutName- 給 QualityWithoutName 發送悄悄話 QualityWithoutName 的博客首頁 (0 bytes) () 02/25/2024 postreply 12:53:30

這三種情況就是給定條件下的樣本空間,隻有前兩種情況最後一球才是金,2/3 -QualityWithoutName- 給 QualityWithoutName 發送悄悄話 QualityWithoutName 的博客首頁 (0 bytes) () 02/25/2024 postreply 12:58:46

三門問題的討論主要是關於不同遊戲規則對得獎率的影響,和這個問題的重點不一樣。 -QualityWithoutName- 給 QualityWithoutName 發送悄悄話 QualityWithoutName 的博客首頁 (0 bytes) () 02/25/2024 postreply 13:02:41

說謊者悖論與理發師悖論都是抄襲中國的矛盾悖論 -波粒子3- 給 波粒子3 發送悄悄話 (0 bytes) () 02/25/2024 postreply 15:13:53

這有點胡扯。這些是關於集合的悖論。老毛的矛盾論隻是辨證法的簡易本。 -QualityWithoutName- 給 QualityWithoutName 發送悄悄話 QualityWithoutName 的博客首頁 (0 bytes) () 02/25/2024 postreply 16:47:47

矛盾是中國戰國時期發明的 -波粒子3- 給 波粒子3 發送悄悄話 (0 bytes) () 02/25/2024 postreply 17:19:51

矛盾可能還不能叫悖論,但老韓的"矛盾論"應該算。俗語 兩頭堵:) -JSL2023- 給 JSL2023 發送悄悄話 (0 bytes) () 02/26/2024 postreply 07:00:43

終於在想問問題的時候,怎麽問時,把它想明白了。。。讚!當然,如果花時間,實際操作一下,得出同樣結論,會幫助記憶。嗬嗬 -金筆- 給 金筆 發送悄悄話 金筆 的博客首頁 (0 bytes) () 02/25/2024 postreply 18:13:19

你就不如我認真,給你看一下沒搞懂前的實際操作:) -JSL2023- 給 JSL2023 發送悄悄話 (82 bytes) () 02/25/2024 postreply 21:26:58

我後來想起來,大學的時候是學過貝葉斯的概念的,但是時間久遠,就忘掉了。。。 -金筆- 給 金筆 發送悄悄話 金筆 的博客首頁 (0 bytes) () 02/26/2024 postreply 13:48:10

讚。把構造樣本空間、條件概率和全概率公式都講得很清楚。 -清溢- 給 清溢 發送悄悄話 清溢 的博客首頁 (0 bytes) () 02/25/2024 postreply 23:57:41

點讚 -六號公路- 給 六號公路 發送悄悄話 (0 bytes) () 02/26/2024 postreply 03:11:00

這個問題的關鍵(trap)就是事實上根本不存在“第二次xxx的概率”的說法,所以第二次出現的情況不能用獨立概率來計算 -lzr- 給 lzr 發送悄悄話 lzr 的博客首頁 (1496 bytes) () 02/26/2024 postreply 15:08:56

請您先登陸,再發跟帖!