利用sin(x)的Maclaurin series expansion即可
sin(x) = x - x^3/3! + x^5/5! - x^7/7! + x^9/9! - ......
= (x + x^5/5! + x^9/9! + ...... ) - (x^3/3! + x^7/7! + ......)
= x f(x) - x^3 g(x)
由 sin(pi) = 0 可得 f(pi)/g(pi) = pi^2
題目中的式子,正是 f(pi)/g(pi)
因此所求答案就是 pi^2