Let x be a single digit non-zero positive integer and let y be a two digit positive integer. Find all ordered pairs of the form (x,y) such that the sum of x and y and the product of x and y each contain the same digits but in reverse order. Be certain to express all possible answers as ordered pairs of the form (x,y).
Another algebra 1 question
所有跟帖:
• (2,47 -小信人- ♂ (0 bytes) () 12/05/2014 postreply 01:25:54
• 漏了3,24 -小信人- ♂ (0 bytes) () 12/05/2014 postreply 02:11:34
• 應該還漏了個三位數的,(5,26) -魁北克人- ♂ (0 bytes) () 12/05/2014 postreply 08:53:52
• Haha, reverse(31)=13, is not 130, -萬斤油- ♂ (0 bytes) () 12/05/2014 postreply 14:17:10
• 130 --> 031 = 31 -魁北克人- ♂ (0 bytes) () 12/05/2014 postreply 14:43:10
• in the question, it says 'each contain the same digits but in re -萬斤油- ♂ (0 bytes) () 12/05/2014 postreply 15:41:32
• Can someone show me how to get the answers? Need help to explai -JIAYANGGUIZI2- ♂ (0 bytes) () 12/05/2014 postreply 19:31:51
• 我的做法比較笨 -小信人- ♂ (345 bytes) () 12/06/2014 postreply 00:06:04
• 還有2,2x. -小信人- ♂ (0 bytes) () 12/06/2014 postreply 01:07:14
• details -小信人- ♂ (144 bytes) () 12/06/2014 postreply 09:59:16
• 謝了。答案就是 2/47, 3/24。 -JIAYANGGUIZI2- ♂ (0 bytes) () 12/06/2014 postreply 12:45:27