有沒有好辦法?

2006 colored beads are placed on a necklace (circular ring) such that each bead is adjacent to two others. The beads are labeled a_0a_1\ldotsa_{2005} around the circle in order. Two beads a_i and a_j, where i and j are non-negative integers, satisfy a_i = a_j if and only if the color of a_i is the same as the color of a_j. Given that there exists no non-negative integer m < 2006 and positive integer n < 1003 such that a_m = a_{m-n} = a_{m+n}, where all subscripts are taken \pmod{2006}, find the minimum number of different colors of beads on the necklace.

先在此謝過。

所有跟帖: 

17, i.e. the smallest factor of 2006 (but > 2) -柯西- 給 柯西 發送悄悄話 (0 bytes) () 02/08/2012 postreply 23:01:04

???,2134=2*11*97=2134, 依您的理論,11就可以了.那 -jinjing- 給 jinjing 發送悄悄話 (79 bytes) () 02/10/2012 postreply 14:13:29

請您先登陸,再發跟帖!