前麵一解說了,一共是6種不同的position:
P1: 所有跟(1,3)equivalent的
P2: 所有跟(1,2)equivalent的
P3: 所有跟(1,1)equivalent的——終點
P4: 所有跟(2,2)equivalent的
P5: 所有跟(2,3)equivalent的
P6: 所有跟(3,3)equivalent的——回到這就out了
有點brute force哈
第1步:
probability of reaching one of P2 = 1
第2步:
probability of reaching one of P4 = 1/3
probability of reaching one of P1 = 1/3
probability of reaching one of P6 = 1/3 (out)
第3步:
probability of reaching one of P2 = 1/3
probability of reaching one of P5 = 1/3
第4步:
probability of reaching one of P4 = 2/9
probability of reaching one of P1 = 2/9
probability of reaching one of P6 = 1/9 (out)
probability of reaching one of P3 = 1/9 (終點)
注意這第4步已經重複第2步了,不過probability已經是第2步的2/3了,將來第6步,第8步還會重複。Then, the probability of reaching one of P3 is
1/9 * (1 + 2/3 + 4/9 + 8/27 + ...) = 1/3
另一種解法
所有跟帖:
• You use step method is good,but .... -jinjing- ♀ (172 bytes) () 04/01/2010 postreply 16:35:25