This one might be right, but I might be wrong.

來源: 屋漏痕 2009-07-28 12:39:19 [] [博客] [舊帖] [給我悄悄話] 本文已被閱讀: 次 (1042 bytes)
本文內容已被 [ 屋漏痕 ] 在 2009-07-28 16:38:03 編輯過。如有問題,請報告版主或論壇管理刪除.
回答: IMO 2009康MM2009-07-24 03:51:50
Mathematical induction

When n=2, obvious.

Assume the statement is true for n.

For n+1, write M as {b1,b2,…b(n)}, where b1
Let a(n+1) be the max of a(i).

case 1:
If b(n-1)>a1+a2+ … + a(n).
By induction, a solution exists for {a1,…, a(n)} and {b1,…, b(n-1)}. Adding a(n+1) and b(n) won’t cause any conflict.

Case 2:
If b(n-1) By induction, a solution exists for {a1,…, a(n)} and {b1,…, b(n-1)}. If there exists k<=n such that b(n)=a1+…+a(k), insert a(n+1) in front of a(k).

Case 3:
If b(n-1)=a1+a2+…a(n).
If b(n-2)=a1+…+a(n-1), then b(n-1)-b(n-2)=a(n). A solution (based on induction) for {a1,a2,…a(n-1), a(n+1)} and {b1,b2,…,b(n-2),b(n)} can be used to form a solution for {a1,a2,…a(n), a(n+1)} and {b1,b2,…,b(n-1),b(n)}. So we assume b(n-2) is not equal to a1+…+a(n-1). Therefore, a solution exists. This solution plus a(n+1) is bigger b(n-1). If it happens to be b(n), letting a different number be a(n) will avoid it.
請您先登陸,再發跟帖!

發現Adblock插件

如要繼續瀏覽
請支持本站 請務必在本站關閉Adblock

關閉Adblock後 請點擊

請參考如何關閉Adblock

安裝Adblock plus用戶請點擊瀏覽器圖標
選擇“Disable on www.wenxuecity.com”

安裝Adblock用戶請點擊圖標
選擇“don't run on pages on this domain”