Transformation (1)
161^n-1=(161-1)(161^(n-1)+161^(n-2)+.....+1)
so n=even number. Let n=2a
Transformation (2)
161^2a-1=(161^a1+1)(161^a1-1)
(161^a1+1) and (161^a1-1) are 2 consecutive even number. Only one of them can be divided by 4, which must be (161^-1). Because the above transformation (1).
Repeat transformation (1) and (2), we'll get a2 follow the same pattern. Repeat until it just give (161^ai-1) is in a form of (161-1), which gives the smallest n.
Each round give 1 more factor 2, and (161-1) gives 5 factor 2s.
(161^a1+1)(161^a1-1) must be in a form of (161^2000+1)(161^2000-1)
so n=4000
回複:過程。。。。
所有跟帖:
• 回複:回複:過程。。。。 -亂彈- ♂ (28 bytes) () 03/03/2009 postreply 11:48:01
• 回複:回複:回複:過程。。。。 -passenger101- ♂ (57 bytes) () 03/04/2009 postreply 06:34:03
• 佩服!似有筆誤? -endofsuburbia- ♂ (0 bytes) () 03/03/2009 postreply 17:33:41