使君柴氣獨暗持,
聲色未露眾亦知。
懷柴就如人懷孕,
想盡辦法遮不住。
你就喜歡深藏不露嗎?我隻找到你一篇文章。以下來自whatday:
忽悠下排比和必要條件
首先我很感謝老逸的努力和辛勤。讀他選的名著的確令人受益。
昨天他把Dickens的 A Tale of Two Cities裏的第一章抄到這裏。一看前兩句,顯然是出於大家之手:
It was the best of times; it was the worst of times; it was the age of wisdom; it was the age of foolishness; it was the epoch of belief; it was the epoch of incredulity; it was the season of Light; it was the season of Darkness; it was the spring of hope; it was the winter of despair.
幾句排比,一下把人們帶到一個風雲變換的時代。
後來就排比句子老逸講:‘本人在美出版的小說“功夫大師”開頭也採用這種寫法﹕
It was pitch dark, ink dark, coal dark, a night without the moon--the fluorescent lamp of the
sky, not even the stars--the blinking eyes of Heaven. The overcast sky threatened with a heavy downpour’。
可 是讀這兩句英文讓人有種上氣不接下氣的感覺。為什麽呢?因為這裏的語法用詞都有問題。如‘not even the stars’插在這裏做什麽呢?並且‘The overcast sky threatened with a heavy downpour’裏的with是多餘的。threaten這個詞本身就是‘to give signs or warning of; portend‘。所以,地道的英文應是:The overcast sky threatened a heavy downpour。
語 言的產生是來表達和交流思想。準確是很重要的。有位‘學者’說他有判定文科還是理工科生的好辦法:‘實係數一元N次方程根的必要條件是什麽? 能夠答出來的是理工科的,反之是文科的’。我想來想去也不知到‘根的必要條件’是什麽意思。我就請教這位學者: ’請趕快教一教我這個文理不通的人‘。學者耐心,把答案寫下來:‘實係數一元N次方程根的必要條件是: 含有虛 數的複數根, 必須是共軛複根對兒(complex conjugate pair).’
他的答案我倒是幾十年前在初中學過。但他的問 題我還是沒搞懂。隨即我求學者把問題用英文寫出來。學者助人為樂,馬上寫道:‘What is the necessary condition for a solution or root that satisfies a Nth-order equation of one unknown’?看了後我大吃一驚, 他的英文和漢語沒差別。這句英文也是同樣令我費解。我隻好要從他說的結論推一推他想問的問題。
其實我們不能說一個名詞(根,solution,root)的必要條件, 我們應該說一個statement的必要條件。‘solution’是個名詞,不是個statement。那麽什麽是statement?邏輯上 statement是個有真假值的declarative sentence, 如‘我沒有工作“。按定義,statement A是statement B的必要條件如果B implies A(從B能推出A)。 當然知道定義寫出有邏輯的‘必要條件’問題就容易了。
再來看看中學數學。如果我沒記錯,好像就多項式有這樣類似的結論:
If r is a root of a non-constant polynomial in one variable with real coefficients, then so is the conjugate of r.
Or:
If a non-constant polynomial in one variable has real coefficients then its non-real roots are in conjugate pairs
Or:
If a non-constant polynomial in one variable has real coefficients then the conjugate of a root of the polynomial is also a root.
那麽應該怎麽問這個’必要條件’問題呢?我想從上麵的結論,我們不妨這樣問:
What is a necessary condition, in terms of a root, for a non-constant polynomial in one variable to have real coefficients (all coefficients being real)? 這樣我們可以回答:A necessary condition can be that the (complex) conjugate of any root of the polynomial is also a root of the polynomial. 也就是說,如果係數都是實數,它的根的共軛也是它的根。如果有一個共軛不是根,那麽這個方程的係數就不會都是實數。
所以,要想準確的交流,一定要用準確的語言。