Nature:揭開中藥常山的分子作用機製
常山為虎耳草科植物常山的根,是一種傳統中藥,千年以來一直被人們用於治療瘧疾相關的發熱。現在Scripps研究所TSRI的博後周輝皓(Huihao Zhou音譯)獲得了常山活性成分的高分辨率結構,揭開了常山治療瘧疾的神秘機製。
常山的活性成分被稱為常山酮halofuginone,是常山堿febrifugine的衍生物,對免疫係統有部分抑製作用,不過此前人們並不了解這其中的確切機製。這項研究於本周發表在Nature雜誌上,文章詳細描述了常山酮的原子結構,並由此揭開了其作用機理。
氨酰化是機體合成蛋白的一種關鍵生物學過程,研究顯示常山酮就像個扳手,可以鉗住負責氨酰化的複合物。常山也稱為Dichroa febrifuga Lour,研究人指出這種傳統中藥治療瘧疾發熱的作用,就是因為常山酮等化合物幹涉了瘧原蟲的蛋白合成過程,從而在感染者的血液中殺死瘧原蟲。
“約兩千多年前常山就被用來治療瘧疾發熱,而我們的研究首次揭示了這種藥物的作用機製,”領導這項研究的 TSRI教授Paul Schimmel說。
現在已經有研究者用常山酮來進行癌症治療的臨床試驗,而常山酮的高分辨率結構顯示,這一分子也可以幫助人們開發其他的疾病治療藥物。
基因在表達時,先轉錄為RNA,然後再翻譯為蛋白質,而氨酰化是蛋白合成的關鍵步驟。在蛋白的翻譯過程中,一係列小分子tRNA負責將氨基酸運送到 合成中的蛋白鏈上,就像穿珍珠一樣。不過在此之前,tRNA首先要抓牢氨基酸,氨酰化就是氨基酸附著在tRNA上的生物學過程,其中氨酰tRNA 合成酶負責給tRNA添加氨基酸。Schimmel及其同事對這一過程的分子機製進行了多年研究,這項成果為科學家們帶來了從早期進化到新藥物研發等多方 麵的啟示。
氨酰化的基本過程包括三個分子:tRNA、氨基酸和氨酰tRNA 合成酶。此外還有ATP作為燃料為整個過程提供能源。
研究顯示,常山酮的兩半能夠分別阻斷tRNA合成酶的活性位點,阻止tRNA合成酶將脯氨酸添加到相應tRNA上。有趣的是,研究顯示常山酮的結合也需要ATP,這樣的生化現象還是頭一次。(生物穀Bioon.com)
doi:10.1038/nature11774
PMC:
PMID:
ATP-directed capture of bioactive herbal-based medicine on human tRNA synthetase
Huihao Zhou, Litao Sun, Xiang-Lei Yang & Paul Schimmel
Febrifugine is the active component of the Chinese herb Chang Shan (Dichroa febrifuga Lour.)1, 2, which has been used for treating malaria-induced fever for about 2,000 years. Halofuginone (HF), the halogenated derivative of febrifugine, has been tested in clinical trials for potential therapeutic applications in cancer and fibrotic disease3, 4, 5, 6. Recently, HF was reported to inhibit TH17 cell differentiation by activating the amino acid response pathway7, through inhibiting human prolyl-transfer RNA synthetase (ProRS) to cause intracellular accumulation of uncharged tRNA8, 9. Curiously, inhibition requires the presence of unhydrolysed ATP. Here we report an unusual 2.0 Å structure showing that ATP directly locks onto and orients two parts of HF onto human ProRS, so that one part of HF mimics bound proline and the other mimics the 3′ end of bound tRNA. Thus, HF is a new type of ATP-dependent inhibitor that simultaneously occupies two different substrate binding sites on ProRS. Moreover, our structure indicates a possible similar mechanism of action for febrifugine in malaria treatment. Finally, the elucidation here of a two-site modular targeting activity of HF raises the possibility that substrate-directed capture of similar inhibitors might be a general mechanism that could be applied to other synthetases.