回到最初的g(x) = f(f(x))= x^2 - x + 1
g(x)唯一一個不動點為x=1, 相對於1的臨界點有兩個(0 和 1)
即 F={1}, B(1)={0, 1}
f(1)€F, 推得 f(1)=1
如果f(0)=0, 則g(0)=ff(0)=f(0)=0, 0也是g(x)的不動點, 矛盾
因此,f(0)=1
回到最初的g(x) = f(f(x))= x^2 - x + 1
g(x)唯一一個不動點為x=1, 相對於1的臨界點有兩個(0 和 1)
即 F={1}, B(1)={0, 1}
f(1)€F, 推得 f(1)=1
如果f(0)=0, 則g(0)=ff(0)=f(0)=0, 0也是g(x)的不動點, 矛盾
因此,f(0)=1
• 新思路,新方法,有創見性與普遍性。 讚!!! -大醬風度- ♂ (0 bytes) () 09/24/2024 postreply 17:37:30
WENXUECITY.COM does not represent or guarantee the truthfulness, accuracy, or reliability of any of communications posted by other users.
Copyright ©1998-2025 wenxuecity.com All rights reserved. Privacy Statement & Terms of Use & User Privacy Protection Policy