根函數討論的總結

本帖於 2024-09-18 16:52:47 時間, 由普通用戶 大醬風度 編輯

下麵是對 g(x)=f(f(x)) = x^2-x+1 求 f(1), f(0) 一題以及由其引發之討論,本著從特殊到一般的思路之總結。主要思路和方法源自KDE235大師.

===============================================================

For x belong to domain X and for a given single valued function g(x) on G (X to G is an injective mapping), define f(x) so that f(f(x))=g(x); 

Name such defined f(x) as the square root function of g. Please note here the square root is regarding the functional relationship such that g=f^2 or f =g^(1/2), not regarding the square root of the numerical value of g(x).

 

The following statements are true:

1. f(x) exists 

2. f(x) is a single valued function of x

3. f(g(x))=g(f(x)) 

4. For a given single valued g(x), all functions satisfying f(f(x))=g(x) form an equivalent class {f(x)}

   i.e   if both p(p(x))=g(x) and q(q(x))=g(x), the p~q 

  This implies two corollaries:  

  4.1  A given g(x) might have multiple square root functions

  4.2 If e(x) not equal to g(x), then their square root functions will be different as well.

5. Both g(x) and f(x) have their own inverse functions.

6. For a given pair of x_p and x_q (>x_p) in X,

then the following sequence forms an equivalent class of [x_p, x_q] on domain X:

                          a(1)=g(x_p); a(2)=g(x_q)

                          a(i+2)=g(a(i)) for i =1 to infinity      (1)

Then the below defined function f(x) is the square root function of g(x), designate as g^1/2 (x)

                            f(x) = g^(1/2) (x) such that f(aj)=a(j+1)   (a(i) defined in (1) for j=1 to infinity)

 

以上方法是對kde235大師方法的推廣。kde235大師原文在此:https://bbs.wenxuecity.com/netiq/139381.html

 

7. Along the same vein, for h(x)=f(f(f(x))=f^3(x), if h(x) is single valued on domain X, then the 

following sequence forms an equivalent class of [x_p, x_q, x_r] on domain X:

                          b(1)=h(x_p); b(2)=h(x_q); b(3)=h(x_r)

                          b(i+3)=h(b(i)) for i =1 to infinity      (2)

Then the below defined function f(x) is the cubic root function of h(x), designate as h^1/3 (x)

                            f(x) = h^(1/3) (x) such that f(bj)=b(j+1)   (b(i) defined in (2) for j=1 to infinity)

8. The higher order of root functions can be defined in a similar manner.

 

特別指出,6,7中的方法實質是函數的迭代。迭代是解決所有非線性問題最基本的方法。迭代還是混沌現象的形成機理。

 

練習:

Find f(x) so that f(f(x))=g(x) :

1 g(x)=x  求 f(x)

2. g(x)=1/x (x不等於0), 求f(x)

3. g(x)= x^p 求 f(x)

4. Prove that x^-p and x^p belong to the same equivalent class for a given g(x), and find such g(x)

5。 若X is between 0 and pi,g(x)=f(f(x))=cos(x); 求 f(0), f(1), f(pi)

6. Let g(x) = x^2+x-1, 求 f(0)and  f(1)

 

所有跟帖: 

很好! -kde235- 給 kde235 發送悄悄話 (408 bytes) () 09/15/2024 postreply 18:25:04

感謝核實與點評。修改了f~g -大醬風度- 給 大醬風度 發送悄悄話 大醬風度 的博客首頁 (420 bytes) () 09/16/2024 postreply 14:28:47

解題之前,先來兩個根函數定理 -15少- 給 15少 發送悄悄話 15少 的博客首頁 (1090 bytes) () 09/22/2024 postreply 12:44:56

深刻!揭示了平方根函數與原函數的一種內在規律 -大醬風度- 給 大醬風度 發送悄悄話 大醬風度 的博客首頁 (76 bytes) () 09/24/2024 postreply 17:17:02

大醬練習題之六 -15少- 給 15少 發送悄悄話 15少 的博客首頁 (3028 bytes) () 09/22/2024 postreply 15:12:39

讚!15少 方法 -大醬風度- 給 大醬風度 發送悄悄話 大醬風度 的博客首頁 (0 bytes) () 09/24/2024 postreply 17:51:59

大醬練習題之五 -15少- 給 15少 發送悄悄話 15少 的博客首頁 (1837 bytes) () 09/22/2024 postreply 16:01:03

讚! -大醬風度- 給 大醬風度 發送悄悄話 大醬風度 的博客首頁 (97 bytes) () 09/24/2024 postreply 17:48:12

g(x) = f(f(x))= x^2 - x + 1 -15少- 給 15少 發送悄悄話 15少 的博客首頁 (317 bytes) () 09/22/2024 postreply 16:20:58

新思路,新方法,有創見性與普遍性。 讚!!! -大醬風度- 給 大醬風度 發送悄悄話 大醬風度 的博客首頁 (0 bytes) () 09/24/2024 postreply 17:37:30

請您先登陸,再發跟帖!