What is hyperthermia?
Hyperthermia (also called thermal therapy or thermotherapy) is a type of cancer treatment in which body tissue is exposed to high temperatures (up to 113°F). Research has shown that high temperatures can damage and kill cancer cells, usually with minimal injury to normal tissues (1). By killing cancer cells and damaging proteins and structures within cells (2), hyperthermia may shrink tumors.
Hyperthermia is under study in clinical trials (research studies with people) and is not widely available (see Question 5).
How is hyperthermia used to treat cancer?
Hyperthermia is almost always used with other forms of cancer therapy, such as radiation therapy and chemotherapy (1, 3). Hyperthermia may make some cancer cells more sensitive to radiation or harm other cancer cells that radiation cannot damage. When hyperthermia and radiation therapy are combined, they are often given within an hour of each other. Hyperthermia can also enhance the effects of certain anticancer drugs.
Numerous clinical trials have studied hyperthermia in combination with radiation therapy and/or chemotherapy. These studies have focused on the treatment of many types of cancer, including sarcoma, melanoma, and cancers of the head and neck, brain, lung, esophagus, breast, bladder, rectum, liver, appendix, cervix, and peritoneal lining (mesothelioma) (1, 3–7). Many of these studies, but not all, have shown a significant reduction in tumor size when hyperthermia is combined with other treatments (1, 3, 6, 7). However, not all of these studies have shown increased survival in patients receiving the combined treatments (3, 5, 7).
What are the different methods of hyperthermia?
Several methods of hyperthermia are currently under study, including local, regional, and whole-body hyperthermia (1, 3–9).
The effectiveness of hyperthermia treatment is related to the temperature achieved during the treatment, as well as the length of treatment and cell and tissue characteristics (1, 2). To ensure that the desired temperature is reached, but not exceeded, the temperature of the tumor and surrounding tissue is monitored throughout hyperthermia treatment (3, 5, 7). Using local anesthesia, the doctor inserts small needles or tubes with tiny thermometers into the treatment area to monitor the temperature. Imaging techniques, such as CT (computed tomography), may be used to make sure the probes are properly positioned (5).
Does hyperthermia have any complications or side effects?
Most normal tissues are not damaged during hyperthermia if the temperature remains under 111°F. However, due to regional differences in tissue characteristics, higher temperatures may occur in various spots. This can result in burns, blisters, discomfort, or pain (1, 5, 7). Perfusion techniques can cause tissue swelling, blood clots, bleeding, and other damage to the normal tissues in the perfused area; however, most of these side effects are temporary. Whole-body hyperthermia can cause more serious side effects, including cardiac and vascular disorders, but these effects are uncommon (1, 3, 7). Diarrhea, nausea, and vomiting are commonly observed after whole-body hyperthermia (7).
What does the future hold for hyperthermia?
A number of challenges must be overcome before hyperthermia can be considered a standard treatment for cancer (1, 3, 6, 7). Many clinical trials are being conducted to evaluate the effectiveness of hyperthermia. Some trials continue to research hyperthermia in combination with other therapies for the treatment of different cancers. Other studies focus on improving hyperthermia techniques.
To learn more about clinical trials, call the National Cancer Institute’s (NCI) Cancer Information Service at the telephone number listed below or visit NCI’s Clinical Trials Home Page.