還有數不清的袖珍電子產品。
4-bit microprocessors
The concept of a single-chip microprocessor CPU (central processing unit) was conceived in a 1968 meeting in Japan between Sharp engineer Tadashi Sasaki and an unnamed female software engineering researcher from Nara Women's College. He discussed the concept at a brainstorming meeting that was held in Japan. Sasaki attributes the basic invention to break the chipset of a calculator into four parts with ROM (4001), RAM (4002), shift registers (4003) and CPU (4004) to an unnamed woman, a software engineering researcher from Nara Women's College, who was present at the meeting. Sasaki then had his first meeting with Noyce in 1968. Sasaki discussed the microprocessor concept with Busicom and Intel in 1968, and presented the woman's four-division chipset concept to Intel and Busicom. This provided the basis for the single-chip microprocessor design of the Intel 4004.[111] He was also involved in the development of the Busicom 141-PF desktop calculator which led to the 4004's creation.[114] Sasaki thus played a key role in the creation of the first microprocessor.[111]
The first commercial microprocessor, the 4-bit Intel 4004, began with the "Busicom Project"[151] in 1968 as Masatoshi Shima's three-chip CPU design for the Busicom 141-PF calculator.[114][151] In April 1968, Shima was tasked with designing a special-purpose LSI chipset, along with his supervisor Tadashi Tanba, for use in the Busicom 141-PF desktop calculator.[113][114] This later became known as the "Busicom Project".[151] His initial design consisted of seven LSI chips, including a three-chip CPU.[151] His design included arithmetic units (adders), multiplier units, registers, read-only memory, and a macro-instruction set to control a decimal computer system.[114] Busicom then wanted a general-purpose LSI chipset, for not only desktop calculators, but also other equipment such as a teller machine, cash register and billing machine. Shima thus began work on a general-purpose LSI chipset in late 1968.[113]
In 1969, Busicom asked Intel, a company founded one year earlier in 1968 for the purpose of making solid state random-access memory (RAM), to finalize and manufacture their calculator engine. Intel, which was more of a memory company back then, had facilities to manufacture the high density silicon gate MOS chip Busicom required.[113] Shima went to Intel in June 1969 to present his design proposal. Due to Intel lacking logic engineers to understand the logic schematics or circuit engineers to convert them, Intel asked Shima to simplify the logic.[113] Intel wanted a single-chip CPU design,[113] influenced by Sharp's Tadashi Sasaki who presented the concept to Busicom and Intel in 1968.[111] The single-chip microprocessor design was then formulated by Intel's Marcian Hoff in 1969, simplifying Shima's initial design down to four chips, including a single-chip microprocessor CPU.[151] Due to Hoff's formulation lacking key details, Shima came up with his own ideas to find solutions for its implementation. Shima was responsible for adding a 10-bit static shift register to make it useful as a printer's buffer and keyboard interface, many improvements in the instruction set, making the RAM organization suitable for a calculator, the memory address information transfer, the key program in an area of performance and program capacity, the functional specification, decimal computer idea, software, desktop calculator logic, real-time I/O control, and data exchange instruction between the accumulator and general purpose register. Hoff and Shima eventually realized the 4-bit microprocessor concept together, with the help of Intel's Stanley Mazor to interpret the ideas of Shima and Hoff.[113] Busicom's management agreed to the new proposal.[152] The architecture and specifications of the four chips were designed over a period of a few months in 1969, between an Intel team led by Hoff and a Busicom team led by Shima.[151]
After Shima went back to Japan in late 1969 and then returned to Intel in early 1970, he found that no further work had been done on the 4004 since he left, and that Hoff was no longer working on the project. The project leader had become Federico Faggin, who had only joined Intel a week before Shima arrived. After explaining the project to Faggin, Shima worked with him to design the 4004 processor, with Shima responsible for the chip's logic.[113] The chip's final design was completed in 1970 by Intel's Faggin and Busicom's Masatoshi Shima. The Intel 4004 was commercially released in 1971, first as part of the Busicom 141-PF calculator and then separately by Intel. The 4004 was also used in other Busicom machines, including an automated teller machine (ATM) and cash register.[113][151] The microprocessor became the basis for microcomputers, which led to the microcomputer revolution.
NEC released the μPD707 and μPD708, a two-chip 4-bit microprocessor CPU, in 1971.[153] They were followed by NEC's first single-chip microprocessor, the μPD700, in April 1972,[154][155] a prototype for the μCOM-4 (μPD751), released in April 1973,[154] combining the μPD707 and μPD708 into a single microprocessor.[153] In 1973, Toshiba developed the TLCS-12,[154][156] the world's first 12-bit microprocessor.[157] The project began in 1971, when Toshiba began developing a microprocessor for Ford Motor Company's Electronic Engine Control (EEC) project, which went on to utilize Toshiba's 12-bit microprocessor.[157]
- 8-bit to 32-bit microprocessors
Masatoshi Shima joined Intel in 1972.[158] The Intel 8080, released in 1974, was the first general-purpose microprocessor.[159] The 8-bit Intel 8080 was designed by Federico Faggin and Masatoshi Shima.[160] Shima was employed to implement the transistor-level logic of the 8080.[113] In 1975, Shima joined Zilog, where he designed the Zilog Z80 released in 1976 and the Zilog Z8000 released in 1979. After returning to Japan, Shima founded the Intel Japan Design Center in 1980 and VM Technology Corporation in 1986. At VM, he developed the 16-bit microprocessor VM860 and 32-bit microprocessor VM 8600 for the Japanese word processor market. He became a professor at the University of Aizu in 2000.[158]
In 1975, Panafacom (a conglomeration of Fujitsu, Fuji Electric and Matsushita) developed the first commercial 16-bit single-chip microprocessor,[161] the MN1610.[162][163] According to Fujitsu, it was "the world's first 16-bit microcomputer on a single chip".[161]
In the early 1990s, engineers at Hitachi found ways to compress RISC instruction sets so they fit in even smaller memory systems than CISC instruction sets. They developed a compressed instruction set for their SuperH series of microprocessors, introduced in 1992.[164] The SuperH instruction set was later adapted for the ARM architecture's Thumb instruction set.[165] Compressed instructions appeared in the ARM architecture, after ARM Holdings licensed SuperH patents as a basis for its Thumb instruction set.[165]