假如:a=1, b=2, c=1, 滿足 a^2+b^2+c^2=3abc, 因為都是等於6.
但, a^3b+b^3c+c^3a=10, 而3abc=6, 所以這種情況下,a^3b+b^3c+c^3a > 3abc
所以,要證的不等式a^3b+b^3c+c^3a <= 3abc不是總是成立的.
假如:a=1, b=2, c=1, 滿足 a^2+b^2+c^2=3abc, 因為都是等於6.
但, a^3b+b^3c+c^3a=10, 而3abc=6, 所以這種情況下,a^3b+b^3c+c^3a > 3abc
所以,要證的不等式a^3b+b^3c+c^3a <= 3abc不是總是成立的.
WENXUECITY.COM does not represent or guarantee the truthfulness, accuracy, or reliability of any of communications posted by other users.
Copyright ©1998-2025 wenxuecity.com All rights reserved. Privacy Statement & Terms of Use & User Privacy Protection Policy