優化一下

本帖於 2023-12-10 15:57:58 時間, 由普通用戶 kde235 編輯
回答: 笨算kde2352023-12-10 00:40:33

前麵的計算太複雜了,因此設法優化一下
從前麵的分析我們已知問題的關鍵和難點都在於證明下麵三角等式:
(sin54-cos54*sin24) / (sin24*sin54) = sqrt(3)

LHS = (sin54-sin24*cos54) / (sin54*sin24)
    = (sin54-sin24*cos54) / (sin54*sin24)
    = (sin54 - 1/2(sin78-sin30)) / (1/2*(cos30-cos78))
    = (2sin54 - sin78 + sin30) / (cos30 - cos78)
    
我發現可以應用如下兩個等式得解:
   sin54 = sin18 + 1/2               ---- (1)               
   sin78 = 2sin18 + sqrt(3)*cos78    ---- (2)
   
LHS = (2sin54 - sin78 + sin30) / (cos30 - cos78)
    = (2*sin18 + 1 - 2*sin18 - sqrt(3)*cos78 + sin30) / (cos30 - cos78)
    = (1 - sqrt(3)*cos78 + 1/2) / (cos30 - cos78)
    = (3/2 - sqrt(3)*cos78) / (cos30 - cos78)
    = sqrt(3)(sqrt(3)/2 - cos78) / (cos30 - cos78)
    = sqrt(3)
    
當然,還需證明(1)和(2)
(2)是很容易的:
   sin78 - sqrt(3)*cos78 = 2*(1/2*sin78 - sqrt(3)/2)*cos78)
        = 2 * (cos60*sin78 - sin60*cos78)
        = 2 * sin(78-60)
        = 2 * sin18
    因此 sin78 = 2sin18 + sqrt(3)*cos78
    
(1)需要用到我們上次得到的結果: sin18 = (sqrt(5)-1)/4
   因此 sin54 - sin18 = sin(3*18) - sin18
      = 2sin18 - 4(sin18)^3
      = 2sin18 * (1 - 2*(sin18)^2)
      = 2sin18 * (1 - 2 * (6-2sqrt(5))/16)
      = 2sin18 * ((sqrt(5)+1)/4)
      = 2 * ((sqrt(5)-1)/4) * ((sqrt(5)+1)/4)
      = 2 * (5-1)/(4*4)
      = 1/2
    即 sin54 = sin18 + 1/2
     

所有跟帖: 

三角恒等式 sin(84) * sin24 = sin30 * sin54 的簡單證明 -wxcfan123- 給 wxcfan123 發送悄悄話 (189 bytes) () 12/10/2023 postreply 17:31:56

複盤優化一下。 -wxcfan123- 給 wxcfan123 發送悄悄話 (565 bytes) () 12/13/2023 postreply 10:24:08

證明較易,求解較難 -亂彈- 給 亂彈 發送悄悄話 亂彈 的博客首頁 (0 bytes) () 12/14/2023 postreply 12:32:07

請您先登陸,再發跟帖!