隻想到一個繁雜三角計算的解法如下。 還等高手給出純幾何解法。
設原圖中大三角形的頂點分別為A,B,C, BC上麵的點為D,則題為:
已知∠BAD=30, ∠ABC=24, AB=CD, 求∠ACB
設AB=a, ∠ACB=θ
則 AD=sin24/sin(180-24-30)*AB = sin24/sin126*a
a = DC = sin(126-θ)/sinθ * AD = sin(126-θ)/sinθ * sin24/sin126 * a
即問題歸結為關於θ的方程:
sin(126-θ)/sinθ * sin24/sin126 = 1
亦即 sin24 * sin(126-θ) = sin126 * sinθ ---- (1)
方程看似很簡單, 求解卻頗費工夫
(1)式即
sin(54+θ) * sin24 = sinθ * sin54
sin54*cosθ*sin24 + cos54*sinθ*sin24 = sinθ * sin54
sinθ(sin54 - cos54*sin24) = cosθ*sin24*sin54
因此
ctgθ = (sin54-cos54*sin24)/(sin24*sin54) ---- (2)
用計算器可算出右邊的值約為1.732, 有理由相信它是sqrt(3), 即θ=30
問題歸結為證明(2)右邊的值就是sqrt(3)
注意通過等式 sin(3*18) = cos(2*18) 可得出sin18的精確值
令x=sin18, 則
3x-4x^3 = 1-2x^2
4x^3-2x^2-3x+1 = 0
(x-1)(4x^2+2x-1)=0
因此
4x^2 + 2x - 1 = 0 ---- (3)
由(3)可得sin18的精確值 sin18 = (sqrt(5)-1)/4
再利用54=3*18, 24=60-2*18, 可得到sin54, cos54和sin24的用根式表示的精確值, 代入(2)式應該可計算出其值為sqrt(3),
隻是這樣的計算量太大了。 有一個想法是利用(3)在計算中降次。
令x=sin18, y=cos18, 則有
4x^2 = 1 - 2x
y^2 = 1 - x^2
(2) = (sin54-cos54*sin24)/(sin24*sin54)
= 1/sin24 - cos54/sin54
= 1/sin(60-2*18) - cos(3*18)/sin(3*18)
= 1/(sin60*(1-2x^2)-cos60*2xy) - (4y^3-3y)/(3x-4x^3)
= 1/(sqrt(3)/2*(1-2x^2)-xy) - (4y^3-3y)/(3x-4x^3)
= 1/(sqrt(3)/2*(1-1/2*(1-2x))-xy) - (4y^3-3y)/(x(3+2x-1))
= 1/(sqrt(3)/2*x + sqrt(3)/4 - xy) - y/(x+1)
= 4/(2sqrt(3)x + sqrt(3) - 4xy) - y/(x+1)
= [4(x+1) - y(2sqrt(3)x + sqrt(3) - 4xy)] / [(x+1)(2sqrt(3)x + sqrt(3) - 4xy)] --- (4)
分別計算(4)的分子和分母:
Numerator = 4(x+1) - y(2sqrt(3)x + sqrt(3) - 4xy)
= 4x + 4 - 2sqrt(3)xy - sqrt(3)y + 4xy^2
= 4x + 4 - 2sqrt(3)xy - sqrt(3)y + x(4-4x^2)
= 4x + 4 - 2sqrt(3)xy - sqrt(3)y + x(4+2x-1)
= 4x + 4 - 2sqrt(3)xy - sqrt(3)y + 2x^2 + 3x
= 7x + 4 - 2sqrt(3)xy - sqrt(3)y + 1/2*(1-2x)
= 6x + 9/2 - 2sqrt(3)xy - sqrt(3)y
Denominator = (x+1)(2sqrt(3)x + sqrt(3) - 4xy)
= 2sqrt(3)x^2 + 3sqrt(3)x - 4x^2y + sqrt(3) - 4xy
= sqrt(3)/2*(1-2X) + 3sqrt(3)x + y(2x-1) + sqrt(3) - 4xy
= sqrt(3)/2 + 2sqrt(3)x - 2xy - y + sqrt(3)
因此 Denominator * sqrt(3)
= 3/2 + 6x - 2sqrt(3)xy - sqrt(3)y + 3
= 9/2 + 6x - 2sqrt(3)xy - sqrt(3)y
= Numerator
故(4)以及(2)的值確實為sqrt(3), 所求角為30°