提要:從網上搜集的信息來看, 新冠病毒核酸測試的假陰性情況在國內國外都很常見並令醫生病人頭疼。美國發表的文獻記載的假陰性率低一些,但也不免隨臨床測試的情況而波動。高假陰性率是切斷傳染源的障礙,也是勞民傷財的因素。
我並不是醫生,也非病毒專家,開篇討論新冠病毒核酸檢測的準確率,緣於親戚最近的經曆。
我有個親戚,稱她作小楓吧,是個年輕的單親媽媽,帶著四歲的兒子和父母共同生活,家裏還有祖母,四世同堂。今年六月初,全國各地,包括北京,都已解除了旅行禁令,小楓帶著兒子去北京訪問同學。在北京玩了沒幾天,即聽聞新發地批發市場爆發新冠疫情。小楓當即立斷,帶上兒子就買票坐高鐵回家。一下高鐵站,小楓母子倆直接被當地防疫人員帶去做核酸測試,並在指定酒店住宿,三十七小時後得到陰性結果,讓回家隔離十四天。得知這個決定,家裏父母忙忙亂亂做準備,因為怕祖母年紀大抵抗力差,先把老太太送去別處居住。又急急采買食物,待小楓母子倆回家,一家四口即開始家居隔離。所幸母子健康,十四天後解除了隔離,祖母接回家來,小兒在家悶到不行,趕緊放出去到樓下的小公園跟小朋友們玩成一片。
孰料兩天之後,社區忽然來人帶小楓和小兒去做第二次核酸檢測。家人詫異道,“已經得到陰性結果,且十四日潛伏期已過,全無中疫跡象,為何要重複?若要重複豈不該解除隔離之前施行?兩天與社區頻繁接觸,若陽性豈非已擴散到社區?” 社區人員答曰因核酸測試不準,北京歸來人員一律再檢測一遍。小楓母子遂又被帶去測試並住一夜指定酒店。歸家後,小楓述本人所在區免費檢測免費住店,但別區被查人員檢測酒店都要自費。
核酸測試不準,讓人聯想到最近網上流傳的“萬達廣場崩潰大哭女子”(消息來源:7月3日下午,北京市第140場新冠肺炎疫情防控工作新聞發布會)。該女子去過新發地市場,在出現發熱症狀前(6月15日)核酸檢測結果為陰性。6月18日出現發熱等症狀,但6月19日,6月30日兩次核酸檢測結果為陰性。7月1日女子再次自行前往中日友好醫院做檢測,第二天在萬達廣場接到醫院電話通知,核酸檢測結果為陽性,因四次檢測才確診陽性而崩潰大哭。(要是我,我也崩潰啊!)
類似的,在四月份,一男子從俄國回吉林多次核酸檢測陰性,第五次才陽性確診(吉林衛健委4月23日報道)。網上這類事情的報告不少。核酸測試的準確率到底是多少呢?上網學習一下。
新冠病毒核酸檢測,依靠的是核酸擴增的方法。新冠病毒是RNA病毒,試劑盒使用逆轉錄-聚合酶鏈反應技術(RT-PCR技術), 將病毒的RNA合成為DNA,然後對合成DNA進行擴增,再通過熒光探針檢測這些擴增產物。熒光信號可以用儀器檢測到。擴增產物越多,累積的熒光信號就越強。核酸檢測就是通過檢測熒光信號的強度來確定樣本中是否有病毒核酸的特定序列。除此之外,還有一些試劑盒采用類似以上的,但不完全一樣的方法檢測核酸,這裏不一一描述了。
在國內年初的新聞中,能找到核酸測試準確率的具體數字。比如2020年02月09日 18:52 的21世紀經濟報道上題為《科普:核酸檢測陽性率為何隻有30%-50%?》的文章中寫到,“2月5日,危重症醫學專家、中國醫學科學院院長王辰院士在接受央視采訪時說:“並不是所有的病患都能檢測出核酸陽性,對於真是新型冠狀病毒感染的病人,也不過隻有30%至50%的陽性率。通過采集疑似病例咽拭子的辦法,還是有很多假陰性。” 在另一篇文章(科技日報 20200213,《新冠病毒核酸檢測出現假陰性 到底是什麽影響了準確率》)中說,“當前,用核酸檢測新冠肺炎敏感性即陽性率隻有30%—50%,假陰性帶來的漏檢是個大問題。”丹娜(天津)生物科技有限公司首席科學家周澤奇告訴科技日報記者”。
從二月到七月,五個月過去了,當我想找一找這五個月內準確率是否得到提高,卻找不到近期實在的數字。北京佑安醫院感染中心二科副主任醫師李侗曾說:目前還沒有確切的大樣本統計數據證明核酸檢測的準確率 (來源:人民網-人民健康網:《核酸檢測準確率有多高?為什麽陰性結果有效期定在7天之內?》 2020年07月03日)。
在健康時報4月24號的報道《吉林一輸入病例核酸檢測四次才最終確診》中提到,北京清華長庚醫院感染性疾病科主任林明貴接受健康時報記者采訪時提到,“核酸檢測準確性目前並不是百分之百。疫情期間,有不少的確診患者核酸檢測三次、四次,有時甚至五六次最後才確診。”
近期的一篇綜述(COVID-19 diagnostics in context. (中文翻譯:在大背景中看新冠病毒診斷) Weissleder R, Lee H, Ko J, Pittet MJ 。 Science Translational Medicine, 2020; 12(546) ),對於核酸檢測的準確率有比較深入的探討。核酸檢測的準確率由兩個指標代表,第一個是敏感性,也就是陽性檢出率。假陰性的幾率=100%-陽性檢出率,這個數字大概是讀者最關心的。第二個是特異性,也就是陰性樣本不被錯檢為陽性的幾率。對應於這兩個指標,即有陰性可信度和陽性可信度兩個概念,用於對將要進行的檢測做預計 。
在完美情況下,敏感性和特異性都非常高。一般出廠試劑盒測附帶的陽性對照,準確率至少是95%。但是在臨床診斷情況下,準確率又多受好幾樣因素影響,包括感染進程,樣品采取的質量和數量,樣品保存,樣品運輸等。目前看來,市麵上試劑盒特異性沒有什麽問題,很少有案例把未感染的人檢測成受了感染。但是,上麵諸例表明假陰性率高得要多次測試才能測出病毒。至於影響檢測準確率的幾個因素,首先,感染進程是由病毒感染的病理決定的。新冠肺炎的潛伏期通常在3到7天, 最長的潛伏期為14天。感染潛伏期的末期或是發病早期,可能會出現假陰性。約翰霍普金斯大學五月份發表的一篇文章報告,經過統計分析1330個檢測案例,新冠病毒的感染過程中,陽性檢出率起伏很大:出現症狀之前的潛伏期,很難得到陽性結果,從發生症狀的第一天起,陽性檢出率連續上升,到第三天達到最高的平均80%,然後又隨著發展和痊愈的過程持續降低,到第二十一天,平均檢出率隻有34%。
(文章題目:Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction–Based SARS-CoV-2 Tests by Time Since Exposure. Ann. Intern. Med. 2020, May 13; M20-1495. https://doi.org/10.7326/M20-1495).
至於另幾項,涉及樣品的采集,保存,運輸,則完全和操作者有關。操作者是否認真按照規定操作,取樣是否在正確位置,保存和運輸是否負責精心,對是否能得到準確結果至關重要。
還有一項不常被提到的,但是非常重要的指標,就是檢出下限(limit of detection, LoD). 檢出下限是一個濃度單位,定義為至少95%陽性試樣能被正確檢出的最低病毒濃度。不同試劑盒有不同的檢出下限,從每毫升液體中含有幾百個病毒顆粒到幾千個病毒顆粒不等。當病毒顆粒的濃度低於檢出下限的話,陽性樣品不得檢出的百分率就增大。應該很容易理解,脫離檢出下限討論準確率,意義就不大了。當然老百姓若不上網去查,不會知道某個試劑盒的檢出下限。其實做社區核酸檢測的時候,一般也不會告知公眾檢出下限是多少。
六月份新發表的一篇研究論文,專門統計了核酸檢測假陰性的幾率,可以給題目中提出的問題一個解答。
這篇題為“Occurrence and Timing of Subsequent SARS-CoV-2 RT-PCR Positivity Among Initially Negative Patients”(中文翻譯:在新冠病毒逆轉錄-聚合酶鏈反應初測陰性的病人中再次測試得到陽性結果的頻率及時機)的文章,由Dustin R. Long作為第一作者,研究團隊包括西雅圖華盛頓大學和斯坦福大學,發表於Clinical Infectious Diseases (臨床傳染病)2020年6月7號(http://doi: 10.1093/cid/ciaa722)。在這篇報告裏,作者統計了兩個大學做的新冠病毒核酸檢測的結果, 一個是西雅圖華盛頓大學,另一個是斯坦福大學,都是采用的鼻咽拭子樣品。在3月2號到4月7號之間,華盛頓大學為8977人做了核酸測試,832人測出陽性,陽性率9.3%。在測出陰性的8145人當中,338人在7天內重複了測試,其中324人仍舊測得陰性,14人測得陽性。在同樣的時間區間內,斯坦福大學為11935人做了核酸測試,1045人測出陽性,陽性率8.8%。在測出陰性的10890人當中,288人在7天內重複了測試,其中280人仍舊測得陰性,8人測得陽性。把這兩個大學的結果加起來,在第一次測得陰性的又做了二次測試的626人中,22人再次測試得陽性,604人再次測試得陰性。
文章比較保守,沒有試圖計算陽性檢出率。我用文中提供的數據估算了一下, 匯總兩個大學的結果,陽性檢出率在64%左右,也就是說假陰性率是36%左右。(為了計算,我做了兩個假設,假設1: 在返回來再次測試的陰性檢測結果人群中,陽性病人的存在率是和在所有檢測結果是陰性的人之中的存在率相同;假設2::兩次檢測的陽性檢出率相同。因為做了假設,得出的結果不一定準確,應該比較粗略。)
陽性檢出率為 64%,應該是可以接受的。用華盛頓大學和斯坦福大學各自獨立進行檢測的數據來計算,結果差不多,證明檢測的各個步驟質量有保障。目前在網上看到北京民眾抱怨核酸檢測陽性檢出率隻有30%,也就是假陰性率有70%,假如真是這樣的話,怪不得有四次五次才能測出病毒的案例。可以想象,老百姓並不掌握具體數據,所以重複測試對老百姓的生活作息,心理,及錢包都有負麵影響。其實各省各市的衛健委應該做類似以上的實驗和統計,公布當地的檢測陽性檢出率是多少。信息透明是對民眾的尊重。
提高檢測準確率就是降低擾民的程度,提高切斷傳染鏈的效率。在檢測試劑盒質量過關的情況下,保證檢測樣品的采取,保存,運輸都是高質量進行,對於大規模檢測太重要了。踏踏實實地做好每個步驟,就是事半功倍,反之,不顧現有測試條件,追求規模大速度快,準確率勢必不能保證,那就事倍功半,勞民傷財了。
還有一句話,不知道社區大規模檢測時,把六個或十個或更多樣品合為一組測試,是否考慮了檢出下限。多個樣品合組意味著每個樣本都被稀釋。當稀釋到病毒顆粒數接近或低於檢出下限的時候,假陰性幾率就會上升,檢測結果也就不可靠了。
完。
按第二次檢測結果比例倒推,UW首次8145陰性中假陰性數為337 [=(14/338)*8145],同理,Stanford首次檢測出現了303假陰性 [=(8/288)*10890],。那麽,平均假陰性率為25.4%[=337+303/(337+832+303+1045)]。【上述計算中假定沒有假陽性和第二次檢測是純隨機抽取。】
我是如何從上文數據中計算出陽性檢出率的:
1. 設 Y=陽性檢出率 = 檢出的陽性人數/實際的陽性人數
A= 首次受測總人數
B=首次受測人群中實際的陽性人數
C=第二次受測總人數
R1=首次檢測得到陽性結果的人數占總受測人數的比率
R2=第二次檢測得到陽性結果的人數占總受測人數的比率
現在已知的數據有:
A=8977+11935=20912
C=338+288=626
R1=(832+1045)/20912 = 8.976%
R2= (14+8)/626 = 3.514%
B的數值不知道。
(1)假設兩次測試的陽性檢出率相同,
(2) 第二次測試的人群C(626)是第一次測試後的拿到陰性結果的人群(8145+10890=19035)之中的一小部分。假設在人群C中,陽性人存在的比率和在第一次測試後的拿到陰性結果的人群中相同,那麽,
第一次測試: R1 = Yx(B/A)
第二次測試: R2 = Yx(B-BxY)/(A-BxY)
推導出:Y=100%x(1 - R2/R1 + R2)
代入以上已知的數據,可以得出:
Y=64.4%
B=2914.7
以上計算有錯誤的話,請指正。