正文

看能把磚碼多遠

(2006-11-11 04:28:56) 下一個

 來源: constant 於 06-11-09 08:07:29

設有n塊相同的磚,在一張桌子的邊上一塊一塊的壘起來(每層一塊)。問最遠的一塊能伸出桌邊多遠?要證明不能更遠了。

Deuss:  (1+1/2+1/3+…+1/n)/2 .

Assume a brick has length 1, the corner of the table is at position 0.
Bricks are numbered top down as 1, 2, ..., n
Let P_k be the center position of the k-th brick,
and Q_k be the weight center of the first k bricks.

To reach farthest, the following relation must hold:
Q_k=P_{k+1}+1/2 (the top k brick's weight center is exactly at the right edge of the (k+1)-th brick, or the table corner).
Then, Q_{k+1}=(Q_k*k+P_{k+1})/(k+1)=Q_k-1/(2(k+1)).
Because Q_n = 0, we have
0 = Q1-(1/2+1/3+…+1/n)/2

The right edge of the 1st brick reaches to
Q1+1/2=(1+1/2+1/3+…+1/n)/2 .

When n->oo, it can reach arbitrarily far.

[ 打印 ]
閱讀 ()評論 (0)
評論
目前還沒有任何評論
登錄後才可評論.