按黃士傑說法,Deepmind是後來2014年被Google收購後應Google要求開發Alpha係列圍棋人工智能。但放棄繼續實驗和研究,很可惜。
這需要驗證。我早就提出用計算機圍棋做智能技術實驗工具,並告訴過一些人。以此可以尋找人工智能更精確的上限
所有跟帖:
•
AI 不會在同樣的情況下輸二次。 這要一直下, AI 一定勝利。
-WaldenPond-
♂
(0 bytes)
()
03/23/2023 postreply
20:19:14
•
那個業餘圍棋手勝了十四盤。當然完全一樣的局麵,計算機第二次會知道上次走錯了,但未必知道該怎麽走贏
-ScottGu-
♂
(105 bytes)
()
03/23/2023 postreply
20:25:10
•
那位大概就是設計如何測試程序的, 知道AI 的軟肋。
-WaldenPond-
♂
(0 bytes)
()
03/23/2023 postreply
20:27:51
•
他公布的方法不複雜,直覺性很強
-ScottGu-
♂
(0 bytes)
()
03/23/2023 postreply
20:37:40
•
如果, alphago 馬上把輸的結果歸納進測試程序進行再訓練, AI 就補上了那個缺陷。
-WaldenPond-
♂
(0 bytes)
()
03/23/2023 postreply
20:44:27
•
如果這樣不能解決問題, 那麽 alphago 設計有缺陷。這樣的反饋學習成本非常高。
-WaldenPond-
♂
(0 bytes)
()
03/23/2023 postreply
20:47:35
•
據說是知道了上次的錯誤,光憑此經驗仍可能不知道正確的走法,除非訓練過程作大的改變
-ScottGu-
♂
(155 bytes)
()
03/23/2023 postreply
21:51:11