How many derived Llama models are there for download?

我問Gemini。這是它的回答:

It's awesome you're interested in the Llama ecosystem! It's really taken off. Here's what I can tell you about derived Llama models:
 * Over 60,000 on Hugging Face: This is a huge number, and it speaks to the popularity of Llama and the drive to adapt it for specific purposes. Hugging Face is a major hub for sharing and downloading these models.
 * Constant Growth: This number is likely increasing all the time. The AI world moves fast, and new Llama-based models are probably being created and shared regularly.
What are "derived" models?
Essentially, these are Llama models that have been modified or fine-tuned from the original versions released by Meta. People do this to:
 * Improve performance: On specific tasks, like code generation or translation.
 * Reduce size: To make the model run on devices with less processing power.
 * Add features: Like specialized knowledge or the ability to understand different languages.
Where to find them:
 * Hugging Face: This is your best bet. You can search for Llama models and filter by things like task, size, and license.
 * GitHub: Many developers share their derived models on GitHub, often with code and instructions for how to use them.
 * Research papers and blogs: Keep an eye out for announcements of new models in the AI research community.
It's worth noting that the quality and capabilities of these derived models can vary widely. Some are highly polished and effective, while others might be more experimental.
If you're looking for a specific type of Llama model, it's a good idea to do some research and compare different options to find the best fit for your needs.

 

所有跟帖: 

六萬? -Amita- 給 Amita 發送悄悄話 (0 bytes) () 02/05/2025 postreply 21:02:45

是的,超過六萬種還在繼續增加之中,針對不同應用領域。夠驚人的吧。 -大觀園的賈探春- 給 大觀園的賈探春 發送悄悄話 大觀園的賈探春 的博客首頁 (0 bytes) () 02/05/2025 postreply 21:04:56

在那超過六萬and growing的derived models應該很容易找到適合你的應用的,這是AI應用突飛猛進的原因 -大觀園的賈探春- 給 大觀園的賈探春 發送悄悄話 大觀園的賈探春 的博客首頁 (0 bytes) () 02/05/2025 postreply 21:03:22

不是迷失在大海裏了嗎? -Amita- 給 Amita 發送悄悄話 (0 bytes) () 02/05/2025 postreply 21:05:30

那些做AI Consulting的應該知道那些最適合你的公司的需要。 -大觀園的賈探春- 給 大觀園的賈探春 發送悄悄話 大觀園的賈探春 的博客首頁 (0 bytes) () 02/05/2025 postreply 21:09:30

這就是所謂Ecosystem厲害的地方,特別是像Llama這種開源模型,整個用戶社區在不斷完善及擴大其功能。 -大觀園的賈探春- 給 大觀園的賈探春 發送悄悄話 大觀園的賈探春 的博客首頁 (0 bytes) () 02/05/2025 postreply 21:14:27

盡管本壇有些人經常批評小紮,但其實他是很有眼光的。在大眾及媒體注意其他AI公司時,他靜悄悄催生出這個ecosystem。 -大觀園的賈探春- 給 大觀園的賈探春 發送悄悄話 大觀園的賈探春 的博客首頁 (0 bytes) () 02/05/2025 postreply 21:26:26

是罵他的臉都不要了的人品,好伐?又不是罵他眼光。 -Feinbery- 給 Feinbery 發送悄悄話 (0 bytes) () 02/05/2025 postreply 21:38:25

就事論事,不能因這ecosystem 就偉光正吧 -成功的兔- 給 成功的兔 發送悄悄話 (0 bytes) () 02/05/2025 postreply 21:46:27

一碼歸一碼,不管他在其他方麵怎樣,他催生出這個ecosystem造成AI應用突飛猛進的這個成就是不能抹殺的。 -大觀園的賈探春- 給 大觀園的賈探春 發送悄悄話 大觀園的賈探春 的博客首頁 (0 bytes) () 02/05/2025 postreply 21:56:37

這個Llama的ecosystem已經成型,就像Linux在OS領域。 -大觀園的賈探春- 給 大觀園的賈探春 發送悄悄話 大觀園的賈探春 的博客首頁 (0 bytes) () 02/05/2025 postreply 22:02:55

Ecosystem一旦成型就像一個不斷增長的有機體,他人很難與其競爭。 -大觀園的賈探春- 給 大觀園的賈探春 發送悄悄話 大觀園的賈探春 的博客首頁 (0 bytes) () 02/05/2025 postreply 22:10:14

今天70-80%的Data Centers裏的servers的OS是Linux。 -大觀園的賈探春- 給 大觀園的賈探春 發送悄悄話 大觀園的賈探春 的博客首頁 (0 bytes) () 02/05/2025 postreply 22:12:43

Linux的ecosystem使得美國在OS長期居於領先地位。Llama的ecosystem也將使美國在AI長期居於領先 -大觀園的賈探春- 給 大觀園的賈探春 發送悄悄話 大觀園的賈探春 的博客首頁 (0 bytes) () 02/05/2025 postreply 22:15:49

探春啊,過度使用有害無益。類似吃多了不是好事一樣。 -zaocha2002- 給 zaocha2002 發送悄悄話 zaocha2002 的博客首頁 (0 bytes) () 02/05/2025 postreply 22:33:31

你們歐盟有很嚴格的Artificial Intelligence Act。見仁見智啦。我個人是反對對AI設限的。 -大觀園的賈探春- 給 大觀園的賈探春 發送悄悄話 大觀園的賈探春 的博客首頁 (0 bytes) () 02/05/2025 postreply 22:41:53

我反對對AI設限是從競爭的角度來看。如果美國設限而美國的競爭對手不設限,美國在競爭上就會處於劣勢,因此美國不應對AI設限 -大觀園的賈探春- 給 大觀園的賈探春 發送悄悄話 大觀園的賈探春 的博客首頁 (0 bytes) () 02/05/2025 postreply 22:44:51

許多歐盟的公司會把AI-heavy的operations搬到英國,因為英國的AI監管要鬆很多。 -大觀園的賈探春- 給 大觀園的賈探春 發送悄悄話 大觀園的賈探春 的博客首頁 (0 bytes) () 02/05/2025 postreply 23:12:27

請您先登陸,再發跟帖!