設
B2C1/C1A1 = r
A2C1/C1B1 = s
則
A2A3/A1A2 = B2C1/C1A1 = r
B2B3/B1B2 = A2C1/C1B1 = s
A3A4/A2A3 = B2B3/B1B2 = s
B3B4/B2B3 = A2A3/A1A2 = r
A4A5/A3A4 = B3B4/B2B3 = r
B4B5/B3B4 = A3A4/A2A3 = s
A5A6/A4A5 = B4B5/B3B4 = s
B5B6/B4B5 = A4A5/A3A4 = r
於是
S_A1C1A2 = 4
S_A2C2A3 = S_A1C1A2 * (A2A3/A1A2)^2 = 4 * r^2
S_A3C3A4 = S_A2C2A3 * (A3A4/A2A3)^2 = 4 * r^2 * s^2
S_A4C4A5 = S_A3C3A4 * (A4A5/A3A4)^2 = 4 * r^2 * s^2 * r^2
S_A5C5A6 = S_A4C4A5 * (A5A6/A4A5)^2 = 4 * r^2 * s^2 * r^2 * s^2
又
3 = S_B1C1B2 = S_A1C1A2 * B1C1/C1A2 * B2C1/C1A2 = 4 * 1/s * r
因此
s = 4/3*r
可得
24 = S_A4C4A5 = 4 * r^2 * s^2 * r^2 = 4 * (4/3)^2 * r^6
9*6 = 16 * r^6
r^2 = 3/2
s^2 = (4/3)^2*r^2 = 16/9 * 3/2 = 8/3
S_A5C5A6 = 4 * r^4 * s^4 = 4 * (3/2)^2 * (8/3)^2 = 4 * 4^2 = 64