題。如上圖。E,F,D分別是三邊上的n(n>2)等分點。即AE:EA=AF:FB=BD:DC=(n-1):1.已知三角形ABC的麵積。求三角形LMN的麵積。
解:S_LMN = (n-2)^2/(n^2-n+1)*S_ABC
下麵的推理全盤照搬K大俠的解。請大家檢驗。原題有多種解。其它的解法能不能推廣?
利用梅涅勞斯(Menelaus)定理
設 BM:ML:LE = a:b:c
則對三角形ABE和直線FC用梅氏定理,有
BM/ME * EC/CA * AF/FB = 1
即 a/(b+c) * (n-1)/n * (n-1)/1 = 1
a/(b+c) = n/((n-1)^2 ) ---- (1)
再對三角形BCE和直線DA用梅氏定理,有
BD/DC * CA/AE * EL/LB= 1
(n-1)/1 * n/1 * c/(a+b) = 1
c/(a+b) = 1/(n(n-1)) --- (2)
由(1),(2)可解出 a:b:c = n:n(n-2):1
同理可得
AL:LN:ND = CN:NM:MF = BM:ML:LE = a:b:c = n:n(n-2):1
於是 S_LMN = LM/BL * S_BNL
= LM/BL * NL/OL * S_BDL
= LM/BL * NL/OL * DL/AD * S_ABD
= LM/BL * NL/OL * DL/AD * BD/BC * S_ABC
= b/(a+b) * b/(b+c) * (b+c)/(a+b+c) * (n-1)/n * S_ABC
= b^2/((a+b)(a+b+c)) * (n-1)/n * S_ABC
= (n(n-2))^2/(n+n(n-2))(a+b+c) * (n-1)/n* S_ABC
= (n-2)^2/(a+b+c) * S_ABC
= (n-2)^2/(n^2-n+1)*S_ABC