通常第6題會比較難,今年的不一樣?試著解,不對的話請指正。
There are n! different ways to arrange the jumps.
Given a point p between 0 and s = a_1+a_2+...a_n, it
has at most (n-1)! ways to reach. So the total ways to be matched is (n-1)(n-1)! which is less than n!. Also it
means there is at least one way that the grasshopper never lands on any point in M.
Problem 6
所有跟帖:
• 通常第六題不是最難的 -累死算了- ♂ (148 bytes) () 07/26/2009 postreply 01:05:48
• 通常第六題是最難的 -botong- ♂ (408 bytes) () 07/26/2009 postreply 09:25:21
• 有點問題吧 -dynamic- ♂ (226 bytes) () 07/26/2009 postreply 22:14:34
• 回複:有點問題吧 -botong- ♂ (209 bytes) () 07/27/2009 postreply 11:01:10
• 回複:回複:有點問題吧 -dynamic- ♂ (79 bytes) () 07/27/2009 postreply 18:12:36
• 回複:回複:回複:有點問題吧 -botong- ♂ (91 bytes) () 07/28/2009 postreply 10:22:54