Problem 6

本帖於 2009-07-28 16:38:03 時間, 由普通用戶 康MM 編輯

通常第6題會比較難,今年的不一樣?試著解,不對的話請指正。

There are n! different ways to arrange the jumps.
Given a point p between 0 and s = a_1+a_2+...a_n, it
has at most (n-1)! ways to reach. So the total ways to be matched is (n-1)(n-1)! which is less than n!. Also it
means there is at least one way that the grasshopper never lands on any point in M.











所有跟帖: 

通常第六題不是最難的 -累死算了- 給 累死算了 發送悄悄話 (148 bytes) () 07/26/2009 postreply 01:05:48

通常第六題是最難的 -botong- 給 botong 發送悄悄話 botong 的博客首頁 (408 bytes) () 07/26/2009 postreply 09:25:21

有點問題吧 -dynamic- 給 dynamic 發送悄悄話 (226 bytes) () 07/26/2009 postreply 22:14:34

回複:有點問題吧 -botong- 給 botong 發送悄悄話 botong 的博客首頁 (209 bytes) () 07/27/2009 postreply 11:01:10

回複:回複:有點問題吧 -dynamic- 給 dynamic 發送悄悄話 (79 bytes) () 07/27/2009 postreply 18:12:36

回複:回複:回複:有點問題吧 -botong- 給 botong 發送悄悄話 botong 的博客首頁 (91 bytes) () 07/28/2009 postreply 10:22:54

請您先登陸,再發跟帖!