很不幸的事實是,概率論基本上沒有好的中文教材(1998之前,之後我就不清楚了),
Ross的書適合本科和碩士生,勝在例子詳盡,
Billingsley的概率論和弱收斂的兩本教材是非常好的入門書,
chung的概率論教材很嚴格,讀起來會有點累,
如果你真的想理解概率論,feller的兩本書是不可不讀的,可以說,從高中水平到博士以上學位的讀者,都會從中獲益---如果要推選概率論裏麵最有影響的教材,feller的書無可比擬,
Breiman的書也是經典,概率味比chung的濃,
loeve的書可以作為工具書使用。
2. 隨機分析
黃誌遠的隨機分析入門是一本很好的書,
嚴加安的鞅論可以做工具書用,
Ross的Inrto to probability model可以做本科生隨機過程入門,例子很多,
Karlin & Taylor的兩本書非常適合碩士生用,
resnick的書概率味很不錯,
oksendal的書是SDE裏麵最簡單的,
Karatzas Shreve有好幾本書,金融數學的博士不可不讀,
Revuz Yor的連續鞅是很好的書,
Protter的書是嚴格隨機分析裏麵最容易讀的,文筆很好,
williams的書深入淺出,入門很合適,
Chung Williams的書比oksendal稍微難一點,作為應用隨機分析的標準教材很不錯。
3. 前麵兩個清單是概率類的,但它們是遠遠不夠的
如果你是數學/物理/計算機博士,而希望去華爾街工作,你會有什麽樣的機會呢?首先,期望不要太高,舉個例子,一個Columbia大學的Associate Prof,做金融工程的(大概比國內大部分"牛人"做的還要好一點),最近跳到了Hedge Fund,也不得不從entry level做起,原由很簡單: You have potential, BUT You Don't Know Nothing yet!另外,投行三大業務:underwriting, M&A, trading,做數理的基本和前兩項無緣.
數理出身的人在華爾街去向主要是quant(may lead to a trader position in the future, 最好成績是成為star trader 或head quant). Quant可以是前台,中台,後台.一般說來,前台是最重要的工作,風險也大,risk management和model validation風險小,但bonus也少,屬於技術員
還需要什麽呢?
數理方麵:
統計,特別是時間序列
計算代數,
數值算法
偏微(parabolic and elliptic)
控製論
金融方麵:
就要看你想向什麽方向走了,大致上有
1. Fixed income
2. Equity
3. Exotic Derivative
4. Credit Derivative
5. Commodity and FX
另外還需要計算機的知識
可以這麽說,沒有人在所有這些方麵都是專家,我以後會在我知道一點的方向列一些書單,但一定要記住,即使把所有這些書都讀透了,離成為一個專家還是很遠,因為金融畢竟遠遠不僅僅是模型.當然,如果你選擇教書,即使你隻懂偏微,你也可以號稱自己是金融界數學專家了,嗬嗬。
4. 控製論
控製論在portfolio selection problem和risk management裏麵有很多的應用,optimal stopping在美式derivative非常重要
金融數學裏麵用的主要是隨機控製,和粘性解(因為operator is often degenerate)
經典的隨機控製書是
1.FLEMING and RISHEL, (1975) Deterministic and Stochastic Optimal Control.
2.KRYLOV, (1980) Controlled diffusion processes
3.BORKAR, (1989) Optimal control of diffusion processes.
4.BENSOUSSAN and LIONS, (1982) Controle Impulsionnel et Inequations Variationnelles
粘性解的標準文獻是
1. Crandall, Ishii and Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992),
2.Fleming and Soner, Controlled Markov Processes and Viscosity Solutions, 1992.
5.數值算法
首先,finite difference是極其常用的算法,這方麵書籍很多,比如Ames...
計算矩陣: Golub and Van Loan, Matrix Computations, 1996
Kushner and Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time, 1992. Kushner's Markov chain approximation method是控製論裏最有用的算法
ROGERS and TALAY, Numerical Methods in Financial Mathematics. 1997.論文集
Kloeden and Platen, Numerical Solution of Stochastic Differential Equations, 1997. 偏理論,實用性差一點
Glasserman, Monte Carlo Methods in Financial Engineering, 2003這本書非常非常實用,可以說是金融數學數值算法的最新經典
?
6-時間序列
A Guide to Econometrics: by Peter Kennedy可能是最通俗易懂的入門書
Econometric Analysis,by William H. Greene和Time Series Analysisby James Douglas Hamilton是非常標準的教材,許多學校都在用
Box Jerkins的Time Series Analysis: Forecasting & Control,當之無愧的經典
Time Series and Dynamic Models by Christian Gourieroux,Gourieroux寫了許多書,但似乎他的書不如他的研究文章水準高
The Econometrics of Financial Markets,by John Y. Campbell, Andrew W. Lo, A. Craig MacKinlay,新經典啦.
美國學校內金融數學專業:核心課程和課本介紹
(Core Course Abstracts)
Ideas and techniques of numerical analysis illustrated by problems in the approximation of functions, numerical solution of linear and nonlinear systems of equations, approximation of matrix eigenvalues and eigenvectors, numerical quadrature, and numerical solution of ordinary differential equations.
Textbook: A. Quarteroni, R. Sacco, and F. Saleri: Numerical Mathematics, 2nd edition, Springer, 2004
Continuation of Numerical Analysis I.
Textbook: A. Quarteroni, R. Sacco, and F. Saleri: Numerical Mathematics, 2nd edition, Springer, 2004
Numerical Solution of Partial Differential Equations
Finite-difference schemes, investigating stability and convergence, other methods such as those of Ritz-Galerkin type and collocation.
Introduction to stochastic partial differential equations and extreme value theory. Applications to risk analysis and pricing financial securities, such as options and derivatives.
Textbook: S. E. Shreve, Stochastic calculus and Finance II: Continuous-time finance, Springer, 2004
Continuation of Financial Mathematics I. Topics covered include the solution of stochastic differential equations as Markov processes, option pricing via partial differential equations, analysis of exotic options, local and stochastic volatility models, American options, interest rate and term structure models, and application of Lévy (jump) processes to financial models.
Textbook: S. E. Shreve, Stochastic calculus and Finance II: Continuous-time finance, Springer, 2004
Regression Analysis
Review of basic statistical theory and matrix algebra; general regression models, computer application to regression techniques, residual analysis, selection of regression models, response surface methodology, nonlinear regression models, experimental design models, analysis of covariance. Emphasis on applications and many illustrative examples.
Textbook: Applied Linear Regression Models, Kutner et al., McGraw Hill, 4th edition
Model based forecasting methods, autoregressive and moving average models, ARIMA, ARMAX, ARCH, state-space models, estimation, forecasting and model validation, missing data, irregularly spaced time series, parametric and non-parametric bootstrap methods for time series, multi-resolution analysis of spatial and time series signals, time-varying models and wavelets.
Textbook: Intro to Time Series & Forecasting, Brockwell, Springer-Verlag
Theory of point and interval estimation and hypothesis testing. Topics include sufficiency, unbiasedness, and power functions. Emphasis is on application of the theory in the development of statistical procedures.
Textbook: Probability & Statistics, DeGroot, Prentice Hall, 3rd edition
Modern methods of data analysis with an emphasis on statistical computing. Topics include univariate statistics, data visualization, linear models, generalized linear models (GLM), multivariate analysis and clustering methods, tree-based methods, and robust statistics. Expect to use statistical software packages, such as SAS (or SPSS) and Splus (or R) in data analysis.
Textbook: Statistical Consulting, Cabrera/McDougall, Springer-Verlag