2022 年諾貝爾獎\'完全瘋狂”的量子糾纏隔空思想交流, 靈魂旅行
文章來源: TJKCB2022-10-04 16:33:50

2022 年諾貝爾獎"完全瘋狂”的量子糾纏隔空思想交流, 靈魂旅行

科學界似乎都認為,量子糾纏的一方隻能檢測,不能操縱,無法編碼。那量子通訊如何實現呢?

** 

2022 年諾貝爾獎, 隔空思想交流, 靈魂旅行隔空, "完全瘋狂”的量子糾纏領域

Spiritual force, holy spirit, soul connection, the universe, soul travel, spacious exchange of ideas,

“Frenchman Alain Aspect, American John F. Clauser and Austrian Anton Zeilinger were cited by the Royal Swedish Academy of Sciences for experiments proving the “totally crazy” field of quantum entanglements to be all too real. They demonstrated that unseen particles, such as photons, can be linked, or “entangled,” with each other even when they are separated by large distances.”

It all goes back to a feature of the universe that even baffled Albert Einstein and connects matter and light in a tangled, chaotic way.

Bits of information or matter that used to be next to each other even though they are now separated have a connection or relationship — something that can conceivably help encrypt information or even teleport. A Chinese satellite now demonstrates this and potentially lightning fast quantum computers, still at the small and not quite useful stage, also rely on this entanglement. Others are even hoping to use it in superconducting material.

“It's so weird,” Aspect said of entanglement in a telephone call with the Nobel committee. “I am accepting in my mental images something which is totally crazy.”

Yet the trio's experiments showed it happen in real life.

“Why this happens I haven't the foggiest,” Clauser told The Associated Press during a Zoom interview in which he got the official call from the Swedish Academy several hours after friends and media informed him of his award. “I have no understanding of how it works but entanglement appears to be very real.”

His fellow winners also said they can't explain the how and why behind this effect. But each did ever more intricate experiments that prove it just is.

Clauser, 79, was awarded his prize for a 1972 experiment, cobbled together with scavenged equipment, that helped settle a famous debate about quantum mechanics between Einstein and famed physicist Niels Bohr. Einstein described “a spooky action at a distance” that he thought would eventually be disproved.

“I was betting on Einstein,” Clauser said. “But unfortunately I was wrong and Einstein was wrong and Bohr was right.”

Aspect said Einstein may have been technically wrong, but deserves huge credit for raising the right question that led to experiments proving quantum entanglement.

“Most people would assume that nature is made out of stuff distributed throughout space and time," said Clauser, who while a high school student in the 1950s built a video game on a vacuum tube computer. "And that appears not to be the case.”

What the work shows is “parts of the universe — even those at great distances from each other — are connected,” said Johns Hopkins physicist N. Peter Armitage. “This is something so unintuitive and something so at odds with how we feel the world ‘should’ be.”

This hard-to-understand field started with thought experiments. But what in one sense is philosophical musings about the universe also holds hope for more secure and faster computers all based on entangled photons and matter that still interact no matter how distant.

“With my first experiments I was sometimes asked by the press what they were good for,” Zeilinger, 77, told reporters in Vienna. “And I said with pride: ‘It’s good for nothing. I’m doing this purely out of curiosity.’”

In quantum entanglement, establishing common information between two photons not near each other "allows us to do things like secret communication, in ways which weren’t possible to do before,” said David Haviland, chair of the Nobel Committee for Physics.

Quantum information “has broad and potential implications in areas such as secure information transfer, quantum computing and sensing technology," said Eva Olsson, a member of the Nobel committee. "Its predictions have opened doors to another world, and it has also shaken the very foundations of how we interpret measurements.”

The kind of secure communication used by China’s Micius satellite — as well as by some banks — is a “success story of quantum entanglement,” said Harun Siljak of Trinity College Dublin. By using one entangled particle to create an encryption key, it ensures that only the person with the other entangled particle can decode the message and "the secret shared between these two sides is a proper secret,” Siljak said.

While quantum entanglement is “incredibly cool” security technologist Bruce Schneier, who teaches at Harvard, said it is fortifying an already secure part of information technology where other areas, including human factors and software are more of a problem. He likened it to installing a side door with 25 locks on an otherwise insecure house.

At a news conference, Aspect said real-world applications like the satellite were “fantastic.”

“I think we have progress toward quantum computing. I would not say that we are close," the 75-year-old physicist said. “I don’t know if I will see it in my life. But I am an old man.”

Speaking by phone to a news conference after the announcement, the University of Vienna-based Zeilinger said he was “still kind of shocked” at hearing he had received the award.

Clauser, Aspect and Zeilinger have figured in Nobel speculation for more than a decade. In 2010 they won the Wolf Prize in Israel, seen as a possible precursor to the Nobel.

The Nobel committee said Clauser developed quantum theories first put forward in the 1960s into a practical experiment. Aspect was able to close a loophole in those theories, while Zeilinger demonstrated a phenomenon called quantum teleportation that effectively allows information to be transmitted over distances.

“Using entanglement you can transfer all the information which is carried by an object over to some other place where the object is, so to speak, reconstituted," Zeilinger said. He added that this only works for tiny particles.

“It is not like in the Star Trek films (where one is) transporting something, certainly not the person, over some distance,” he said.

A week of Nobel Prize announcements kicked off Monday with Swedish scientist Svante Paabo receiving the award in medicine Monday for unlocking secrets of Neanderthal DNA that provided key insights into our immune system.

Chemistry is on Wednesday and literature on Thursday. The Nobel Peace Prize will be announced Friday and the economics award on Oct. 10.

The prizes carry a cash award of 10 million Swedish kronor (nearly $900,000) and will be handed out on Dec. 10. The money comes from a bequest left by the prize’s creator, Swedish dynamite inventor Alfred Nobel, who died in 1895.

———

Jordans reported from Berlin, Borenstein from Kensington, Maryland, and Burakoff from New York. David Keyton in Stockholm and Masha Macpherson in Palaiseau, France, contributed.

———

Follow all AP stories about the Nobel Prizes at https://apnews.com/hub/nobel-prizes

二哥得諾獎了。。

 
來源:  於 2022-10-04 07:33:09 [] [博客] [舊帖] [給我悄悄話] 本文已被閱讀: 2485 次 (1268 bytes)
本文內容已被 [ 小二哥李白 ] 在 2022-10-04 08:15:32 編輯過。如有問題,請報告版主或論壇管理刪除.

笑壇吹牛不上稅,二哥6年前在博客記錄的一個有關量子物理和貝爾不等式的實驗,

最近看量子科普,明白了一些有趣的道理。。。

二哥說,“係統設計得很聰明,可以去上帝那裏領獎了。

果然今年得諾獎了!

 

 

三位科學家榮獲2022年諾貝爾物理學獎 © 路透社圖片

瑞典皇家科學院10月4日宣布,將2022年諾貝爾物理學獎授予法國物理學家阿蘭·阿斯佩(Alain Aspect)、美國理論和實驗物理學家約翰·克勞澤(John F. Clauser) 和奧地利物理學家安東·塞林格(Anton Zeilinger),以表彰他們為糾纏光子實驗、證明違反貝爾不等式和開創性的量子信息科學所作出的貢獻。

aguafresh 發表評論於 
bia 發表評論於 2022-10-04 09:34:59
胖得理直氣壯 發表評論於 2022-10-04 08:50:48
伯克利這幾年年年中啊
===============
什麽呀,人家明明是加州理工的,高一個檔次好嗎
====================================
什麽呀,人家明明是因為在伯克利(伯克利大學和伯克利勞倫斯實驗室)的工作成果而得獎的,
bsmile 發表評論於 

markLA 發表評論於 2022-10-04 11:36:26
zzbb-bzbz 發表評論於 2022-10-04 11:24:17
中國已經實現量子糾纏的通信應用了,西方還在糾纏在量子糾纏是否成立,純粹糊弄人類
=========
看了此貼,掩嘴大笑三聲,哈哈哈。典型的文盲五毛貼,被宣傳雞血忽悠的一愣一愣還在顯擺
=========
這個回複沒毛病,說明西方更側重於理論本身,而不是像中國更側重於工程。量子糾纏的最底層的理論認識是不完全的,譬如超光速相互作用等,當代的物理隻描述了這個現象本身。本人對這個題目敬而遠之。
markLA 發表評論於 
zzbb-bzbz 發表評論於 2022-10-04 11:24:17
中國已經實現量子糾纏的通信應用了,西方還在糾纏在量子糾纏是否成立,純粹糊弄人類

=========
看了此貼,掩嘴大笑三聲,哈哈哈。典型的文盲五毛貼,被宣傳雞血忽悠的一愣一愣還在顯擺
zzbb-bzbz 發表評論於 
中國已經實現量子糾纏的通信應用了,西方還在糾纏在量子糾纏是否成立,純粹糊弄人類
dakinglaile 發表評論於 
John F. Clauser,是Cal Tech 畢業的,在UC Berkeley 的勞倫斯實驗室工作
ArrowOne 發表評論於 
不明覺厲,讚一個
bia 發表評論於 
胖得理直氣壯 發表評論於 2022-10-04 08:50:48
伯克利這幾年年年中啊
===============
什麽呀,人家明明是加州理工的,高一個檔次好嗎
cwang28 發表評論於 
Caucasian奇才的比例較其他族裔高
L94607 發表評論於 
科學界似乎都認為,量子糾纏的一方隻能檢測,不能操縱,無法編碼。那量子通訊如何實現呢?十多年來都在做,沒見任何結果。
胖得理直氣壯 發表評論於 
伯克利這幾年年年中啊
bsmile 發表評論於 
這個諾獎好像是眾望所歸,盡管還是有理論上沒法解釋的缺憾,即糾纏態本身(也許是自己孤陋寡聞)
加拿大草根一枚 發表評論於 
發錯了
加拿大草根一枚 發表評論於 
喜歡民主的,就在民主國家生活,喜歡威權,獨裁的就在中國呆著,為什麽哭著喊著,說你們優越。偷著樂不好嗎。
borisg 發表評論於 
The Aspect experiment was done long long time ago. Luckly he lived long enough to get the prize...